История математических обозначений
Опубликовано 2015-03-03 17:00
Математические обозначения — символы, используемые для компактной записи математических уравнений и формул. Помимо цифр и букв различных алфавитов (латинского, в том числе в готическом начертании, греческого и еврейского), математический язык использует множество специальных символов, изобретённых за последние несколько столетий.
Некоторые наиболее важные математические обзначения с указанием происхождения или изобретения их приводятся ниже.

Для обозначения цифр от 1 до 9 в Индии с VI века до н. э. использовалось написание «брахми», с отдельными знаками для каждой цифры. Несколько видоизменившись, эти значки стали современными цифрами, которые мы называем арабскими, а сами арабы — индийскими.
Десятичная запятая, отделяющая дробную часть числа от целой, введена итальянским астрономом Маджини (1592) и Непером (1617). Ранее вместо запятой ставили иные символы — вертикальную черту: 3|62, или нуль в скобках: 3 (0) 62
«Двухэтажная» запись обыкновенной дроби (например ) использовалась ещёдревнегреческими математиками, хотя знаменатель у них записывался надчислителем, а черты дроби не было. Индийские математики переместили числитель наверх; через арабов этот формат переняли в Европе. Дробную черту впервые в Европе ввёл Леонардо Пизанский (1202), но в обиход она вошла только при поддержке Иоганна Видмана (1489).
Знаки плюса и минуса придумали, по-видимому, в немецкой математической школе «коссистов» (то есть алгебраистов). Они используются в учебнике Иоганна Видмана «Быстрый и приятный счёт для всех торговцев», изданном в 1489 году. До этого сложение обозначалось буквой p (plus) или латинским словом et (союз «и»), а вычитание — буквой m(minus)
Знак умножения ввёл в 1631 году Уильям Отред (Англия) в виде косого крестика. До него использовали чаще всего букву M, хотя предлагались и другие обозначения: символ прямоугольника (Эригон, 1634), звёздочка (Иоганн Ран,1659). Позднее Лейбниц заменил крестик на точку (конец XVII века), чтобы не путать его с буквой x; до него такая символика встречалась у Региомонтана (XV век) и английского учёного Томаса Хэрриота (1560—1621).
Знаки деления. Отред предпочитал косую черту. Двоеточием деление стал обозначать Лейбниц.
Знак плюс-минус появился у Жирара (1626) и Отреда. Правда, Жирар между плюсом и минусом писал ещё словами «или».
Возведение в степень. Современная запись показателя степени введена Декартом в его «Геометрии» (1637), правда, только для натуральных степеней, больших 2.
Знак суммы ввёл Эйлер в 1755 году.
Знак произведения ввёл Гаусс в 1812 году.
Букву i как код мнимой единицы: предложил Эйлер (1777), взявший для этого первую букву слова imaginarius (мнимый).
Обозначение абсолютной величины и модуля комплексного числа появились уВейерштрасса в 1841 году. В 1903 году Лоренц использовал эту же символику для длины вектора.
Первое печатное появление знака равенства (записано уравнение

Знак равенства предложил Роберт Рекорд в1557 году
Знак «приблизительно равно» придумал немецкий математик С. Гюнтер в 1882 году.
Знак «не равно» впервые встречается у Эйлера.
Автор знака «тождественно равно» — Бернхард Риман (1857). Этот же символ, по предложению Гаусса, используется в теории чисел как знак сравнения по модулю, а в логике — как знак операции эквивалентности.
Знаки сравнения ввёл Томас Хэрриот в своём сочинении, изданном посмертно в 1631 году. До него писали словами: больше, меньше.
Символы нестрогого сравнения предложил Валлис в 1670 году.
,
Символы «угол» и «перпендикулярно» придумал в 1634 году французский математик Пьер Эригон. Символ угла у Эригона напоминал значок , современную форму ему придал Уильям Отред (1657).
Современные обозначения угловых единиц (градусы, минуты, секунды) встречаются ещё в «Альмагесте» Птолемея. Радианную меру углов, более удобную для анализа, предложил в 1714 году английский математик Роджер Котс. Сам термин радиан придумал в 1873 году Джеймс Томсон, брат известного физика лорда Кельвина.
Общепринятое обозначение числа 3,14159… впервые образовал Уильям Джонс в1706 году, взяв первую букву слов греч. περιφρεια — окружность и περμετρος —периметр, то есть длина окружности. Это сокращение понравилось Эйлеру, труды которого закрепили обозначение окончательно.
Сокращённые обозначения для синуса и косинуса ввёл Отред в середине XVII века.
Сокращённые обозначения тангенса и котангенса: введены Иоганном Бернулли в XVIII веке, они получили распространение в Германии и России. В других странах употребляются названия этих функций
, предложенные Альбером Жираром ещё ранее, в начале XVII века.
Манера обозначать обратные тригонометрических функции с помощью приставки arc (от лат. arcus, дуга) появилась у австрийского математика Карла Шерфера (нем. Karl Scherffer; 1716—1783) и закрепилась благодаряЛагранжу. Имелось в виду, что, например, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: , но они не прижились.
Манера обозначать производную по времени точкой над буквой идёт от Ньютона (1691).
Краткое обозначение производной штрихом восходит к Лагранжу.
Оформление определённого интеграла в привычном нам виде придумал Фурье.
Стандартное обозначение числа Эйлера e = 2,71828… предложено, естественно, Эйлером (1728, опубликовано в 1736 году).
Символ частной производной сделали общеупотребительным сначала Карл Якоби (1837), а затем Вейерштрасс, хотя это обозначение уже встречалось ранее в одной работе Лежандра (1786).
Символ предела появился в 1787 году у Симона Люилье и получил поддержку Коши (1821)[9]. Предельное значение аргумента сначала указывалось отдельно, после символа lim, а не под ним. Близкое к современному обозначение ввёл Вейерштрасс, однако вместо привычной нам стрелки он использовал знак равенства[10]. Стрелка появилась в начале XX века сразу у нескольких математиков — например, у Харди (1908).
Символ этого дифференциального оператора придумал Уильям Роуэн Гамильтон(1853), а название «набла» предложил Хевисайд (1892).
находящейся на интернете в свободном доступе
http://goo.gl/WcU0Ss
Оставлять комментарии могут только зарегистрированные пользователи. Войдите в систему используя свою учетную запись на сайте: |
||