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Abstract

It is claimed that turbulence in fluids is inherently coher-
ent phenomenon. The coherence shows up clearly as strongly
correlated helicity fluctuations of opposite sign. The helic-
ity fluctuations have cellular structure forming clusters that
are actually observed as vorticity bands and coherent struc-
tures in laboratory turbulence, direct numerical simulations
and most obviously in atmospheric turbulence. The clusters
are named BCC - Beltrami Cellular Clusters - because of the
observed nearly total alignment of the velocity and vorticity
fields in each particular cell, and hence nearly maximal possi-
ble helicity in each cell; although when averaged over all the
cells the residual mean helicity in general is small and does
not play active dynamical role. The Beltrami like fluctuations
are short-lived and stabilize only in small and generally con-
tiguous sub-domains that are tending to a (multi)fractal in the
asymptotic limit of large Reynolds numbers, Re →∞. For the
model of homogeneous isotropic turbulence the theory predicts
the leading fractal dimension of BCC to be: DF = 2.5. This
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particular BCC is responsible for generating the Kolmogorov
−5/3 power law energy spectrum.

The most obvious role that BCC play dynamically is that
the nonlinear interactions in them are relatively reduced, due
to strong spatial alignment between the velocity field v(r, t)
and the vorticity field ω(r, t) = curlv(r, t), while the physical
quantities typically best characterizing turbulence intermit-
tency, such as entrophy, vorticity stretching and generation,
and energy dissipation are maximized in and near them. The
theory quantitatively relates the reduction of nonlinear inter-
actions to the BCC fractal dimension DF and subsequent
turbulence intermittency.

It is further asserted that BCC is a fundamental feature of
all turbulent flows, e.g., wall bounded turbulent flows, atmo-
spheric and oceanic flows, and their leading fractal dimension
remains invariant and universal in these flows. In particu-
lar, theoretical and numerical evidence is given indicating that
BCC in turbulent channel/pipe flows have the depth at the
walls proportional to the square root of the Reynolds number
in wall units, Ly ∝

√
Re , which is equivalent to the frac-

tal dimension in normal to the walls y direction Dy
F = 0, 5,

and the total dimension DF = Dx,z
F + Dy

F = 2 + 0.5 = 2.5.
Similar BCC structure and the same fractal dimension are
suggested for geophysical turbulence, in near agreement with
the recent comprehensive analysis of experimental and obser-
vational data. It is asserted that the atmospheric and oceanic
events, e.g., tropical hurricanes, tornadoes and other mesoscale
phenomena, and probably ocean currents are manifestations of
BCC and their environs.

Generally BCC should be rather seen as the turbulence
core, while the whole surrounding 3D flow as being created
and sustained by the intense vorticity of BCC by means of
induction, in a manner similar to that for an electric current
generating magnetic field.

It is further argued that BCC is not only a theoretical
concept important for fundamental grasp on turbulence, but
may be a practical asset furnishing tools for turbulence man-
agement in regular fluids and plasmas.

The concept of helical fluctuations in turbulence goes 25
years back in time, and while never totally abandoned nev-
ertheless has been residing on the fringes of research activity.
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Experiment and numerical simulations had not been able to ei-
ther validate or repudiate decisively the concept. However, re-
cent large scale direct numerical simulations and proliferation
of experimental and observational data showed convincingly
how ubiquitous is the phenomenon of helicity fluctuations in
various turbulent flows, from hurricanes and tornadoes to tur-
bulent jets to solar wind plasma turbulence to turbulent flows
in compressible fluids. This allowed a fresh look at the concept
and led to a quantitative theory exposed in this paper.

The paper concludes with a brief discussion of possible sim-
ilarities between turbulence and certain other complex non-
equilibrium systems generating smart intrinsic coherence in
the course of dissipative dynamical evolution.
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Foreword

Turbulence in ordinary fluids and plasmas is one of the most typ-
ical phenomena found in observed Universe. Practically all liquids,
gases and plasmas are in a state of turbulent agitation. Still tur-
bulence remains poorly understood after hundreds of years of most
intensive study by thousands of researchers. Many have resigned
to the fact and abandoned the spirited debate on turbulence nature
that had been typical for the second half of the 20th century. Often
turbulence is perceived, by laymen and professionals alike, as chaos.
In reality turbulence is organized and coherent. This truly puzzling
aspect of turbulence is disregarded by many in geophysical and me-
teorological studies where sometimes phenomenological atmospheric
models are built with only a remote reference to atmospheric turbu-
lence organization. Far reaching predictions are made based on these
models that have equally remote chances to come true.

Practitioners of turbulence in aeronautical engineering calculate
the shapes and flight performances of aircrafts on a daily basis and
fortunately do it successfully most of the time. As successful are me-
chanical and civil engineers in other disciplines dealing with flows of
fluids. They recognize the coherence of turbulence since they observe
routinely the so-called coherent structures in turbulent flows around
airfoils and in the pipes and all other flows important for engineering
applications. Nevertheless, they may be not hard pressed to come up
with fundamental explanation for this coherence. The truth is that
the engineering community has accumulated during the hundreds of
years of experience and especially since the advent of aeronautics so
much empirical data and know-how on turbulent flows in thousands
of situations. All these data and tremendous know-how are sum-
marized today in semi-phenomenological equations, tables and more
recently computer models and used by engineers with remarkable
dexterity and ingenuity in a reliable manner in most of engineering
applications. The contemporary engineers are like the architects of
the antiquity who built not burdened by the knowledge of Newton’s
laws and statics and did it magnificently.

The empirical knowledge of turbulence largely fails for certain
applications. It has been ineffective for most attempts of the last
half a century to improve turbulence management and control. No
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need to have a degree in mechanical engineering, it may be even
counterproductive, to notice that ocean dwellers and birds, propelling
with amazing elegance through their (turbulent) habitat, have more
profound understanding of turbulence management than we do. The
attempts to emulate their techniques did not bring much success.

But it is when observing the atmospheric and oceanic turbulence,
the planetary and mesoscale geophysical events, that the lack of un-
derstanding is most apparent. On geophysical scales we are miniscule
inside observers. Even the small size geophysical events are huge for
us. We don’t have to peer inside trying to glimpse some small scale
structures as we do in engineering scale turbulence. And here we
encounter real enigmas.

The greatest one is the recurrent and obviously organized global
planetary scale atmospheric and ocean flow patterns. Usually we
take it for granted and do not enquire for the reasons. Many believe
that meteorologists surely have the knowledge and explanations for
this. In reality meteorologists know well how limited is the present
understanding of the reasons for this organization. There is so much
variability and chaos in every locality on Earth. Still on the global
spatial and temporal scales the most basic flow patterns and sub-
sequent weather patterns can be anticipated with great confidence.
The recurrence in the global weather patterns goes on forever and we
are used to it to such a degree that we don’t view this truly amazing
fact with surprise. We know that there are currents in the oceans and
jets in the atmosphere. They flow like rivers through the ocean and
air for thousands of miles for eternity of time. Why do these currents
and jets not mix up, diffuse into respectively the surrounding ocean
and atmosphere as we would expect based on our intuition and every
day experience? Why the tropical storms, largely the same in num-
bers and with roughly the same intensity, are generated every year
in tropical ocean regions and travel thousands of miles holding the
shape and coherence to release their energy and content at about the
same spots on the globe? What are tornadoes and why they strike
with seasonal regularity in more or less the same regions on land?

There are many atmospheric events that we perceive with our
naked eyes as organized structures in the air: cumulus clouds, squall
lines, cloud streets. On a level of naive and one may say unlearn intu-
ition we know that they are all coherent structures having shape and
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made of fluid motion organized in some way, but as soon as we try
to define quantitatively what is this that makes us to perceive them
as such we fail. There is no adequate scientific language to serve and
quantify the intuitive recognition of these coherent structures. For
an honest observer not burdened with the years of study of mun-
dane meteorological details the coherence of geophysical shapes and
weather patterns, when they are considered on adequate space and
temporal scales, is short of miraculous. This coherence co-exists with
tremendous local variability in space and time. All meteorological
modeling is ineffective when weather predictions are extended over a
week time period. How is it that from all the chaos and local unpre-
dictability of turbulent flows the tremendous global order of things
in the atmosphere and oceans is created?

To understand the origins and mechanisms of global flow organi-
zation is of truly great significance. If not for the atmospheric and
oceanic turbulence coherence our very existence on Earth would have
not been possible. It is necessary to recognize that hurricanes, torna-
does, ocean and atmospheric currents and other magnificent geophys-
ical events are most probably coherent manifestations of one global
turbulence, rather than just local events caused by freak random co-
incidences of atmospheric and oceanic or land conditions.a

Myriads of laboratory observations show the presence of what is
called coherent structures (CS) in all turbulent flows, not only geo-
physical. No mathematical description of these structures has been
developed but they appear quite obviously to experimentalist’s eye
as domains of seemingly structured flow patterns distinct from the
surrounding flow. Every engineer and experimentalist knows that
they exist because they are clearly visualized, as clouds in the sky
are. Usually clouds are associated with ice particles and thermody-
namic transformations resulting in rain. Few associate them in the
first place with turbulence. But in fact clouds are the most obvious
coherent structures in turbulence. The entire atmosphere is turbu-
lent and the motion in the clouds is always highly turbulent, as most
learn from the air travel experience. In laboratories experimentalists
for better visualization inject dyes into the flow to give substance
and color to coherent structures, as vapor and icicles give visual sub-
stance to clouds. Since the main concern of engineers are turbulent
boundary layer (BL) flows, such as develop around airfoils or at the
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walls in pipe and channel flows, the coherent structures are mostly
observed and studied in laboratory conditions near the boundaries.
Some experimentalists still continue linking CS to some ill understood
and particular boundary effects, e.g., remains of instabilities in the
incipient laminar flows, rather than intrinsic constituent elements of
turbulence. With no mathematical description and no unifying phys-
ical concept the study of CS remains narrow in scope and stagnant.

Yet other kind of turbulence, which is more often than not con-
sidered quite separately from turbulence in neutral fluids, originates
in plasma. In many manifestations the conducting plasma can be
treated as a continuous media. In this approximation the plasma
flows are described by a set of magnetohydrodynamic (MHD) equa-
tions (see Appendix). All plasma flows in astrophysical and planetary
conditions are intensely turbulent, would it be the solar wind or stars
corona, pulsars or galaxies. It is plasma turbulence that left unful-
filled the last 50 years of work on controlled fusion and left us without
the subsequent inexhaustible source of green energy. With no funda-
mental understanding of turbulence and its coherent manifestations
there is no much hope gaining control over it in neutral fluids or in
plasma.

Despite its intractable reputation a comprehensive and to a cer-
tain extent predictable understanding of turbulence must be possible.
True wealth of experimental data and numerical simulations leave
no doubts that the flows of fluids, laminar and turbulent alike are
adequately described by the (semi-phenomenological) Navier-Stokes
equations.1 The turbulent flows patterns as complicated as they are
must be the solutions of the Navier-Stokes equations. Unfortunately
the Navier-Stokes equations with the exception of few particular cases
of laminar flows are analytically intractable. The attempts to apply
the most sophisticated apparatus of mathematical physics developed
in the last half century for other complex problems of physics, e.g.,
the field theories and phase transitions, all led to frustrating fiascos
and only put smoke on the real issues. Much effort was spent by
enthusiastic physicists and applied mathematicians trying to apply
the perturbation theories, closure models and renormalization group

1At least for the so-called Newtonian fluids such as water, gases and most of
the inorganic solutions. But , for instance, polymer solutions are not Newtonian
liquids.
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methods to the Navier-Stokes equations with no much success. At the
same time the computational capabilities have been growing in the
last 25 years. Presently it is possible to simulate turbulent flows with
simple geometry and at the values of Reynolds numbers approaching
the laboratory conditions, although still very far from what is typical
in nature. The analysis of these simulations allows making confident
and deep conclusions on the structure of turbulence.

A remarkable property of the Navier-Stokes equations is that
when it is re-written in dimensionless variables it contains only one in-
trinsic dimensionless parameter, the Reynolds number. The Reynolds
number is defined as:

Re =
νLL

ν
, (0.1)

where L a characteristic typical scale of the flow is, νL is the velocity
associated with this scale and ν = µ/ρ is kinematic viscosity of the
fluid with density ρ. For almost all flows in nature the Reynolds
numbers are very large, ranging from 104 − 108 in the laboratories
and engineering to 1010−1012 in geophysical phenomena and reaching
fantastic values in astrophysics. 2. For certain critical values of Re ≥
Recritical all laminar flows universally become unstable and seemingly
erratic. This erratic or turbulent fluid motion consists of very large
number of velocity harmonics or degrees of freedom.3 Therefore it is
only natural that it looks chaotic. How a flow becomes turbulent from
a smooth laminar one that is the problem of transition to turbulence
has been to some extent understood on a basic level in the last half
a century.b

Quite distinct from the problem of transition to turbulence there
is a subject of developed turbulence. Developed turbulence is a some-
what loosely defined subject. What is usually understood by devel-
oped turbulence is a complex multiscale flow pattern such as devel-
ops when the Reynolds number is much bigger than its critical value

2To have a better feeling of the orders of magnitude let us estimate a typical
value of Re in the laboratory conditions for a pipe air flow: diameter of the pipe
L = 0, 3× 102cm, νL = 103cm/ sec, νair = 0, 1cm/ sec, and Re = 0, 3× 106. For
water it would be even bigger by one order of magnitude since water is much
denser and νwater ≈ 0, 1νair.

3It will be seen shortly that the number of degrees of freedom in homogeneous
isotropic model of turbulence is of order Re9/4, a huge number for any realistic
Re.
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for which the transition to turbulence occurs, i.e., Re >> Recritical.
With regard to developed turbulence it is customary to adopt the sta-
tistical language of description. The acute variability of the seemingly
chaotic turbulent velocity field and very large number of participat-
ing coupled velocity harmonics, or degrees of freedom, in actual fact
compels one to describe turbulence in statistical terms. Implied in the
statistical description is the assumption that despite the sensitivity
to initial conditions and consequent lack of dynamical predictability,
the features typical for most nonlinear dynamic systems, nevertheless
certain relevant quantities describing turbulent flows in a meaningful
way, when obtained by averaging over a significant span of time, or
over a large volume, or most generally over the ensemble of partic-
ular space-time realizations that originate from many distinct initial
conditions, should acquire the same stable values (Batchelor, 1953).
The same is true for the coherent structures (CS). They have best
meaning within the context of developed turbulence in the sense of
stable features remaining after the averaging over many realizations
of turbulent flows with similar boundary conditions but originating
from different initial conditions.

It should be noted that if there has been genuine progress in the
last decades in understanding of fundamental developed turbulence in
fluids it came from direct numerical simulations (DNS) of the Navier-
Stokes equations and from fascinating geophysical observations.4 On
the other hand physical experiment of the last decades carried out in
well equipped laboratories furnished relatively negligible new insight
into the fundamental structure of fluid turbulence.

In the recent large scale direct numerical simulations of turbu-
lence in a cubic box with periodic boundary conditions (BigBox tur-
bulence) mimicking the so-called homogeneous isotropic turbulence

4The DNS, i.e., numerical solutions projected on a discrete lattice pattern,
but otherwise not modified Navier-Stokes equations have been pursued since the
advent of supercomputers. Such simulations are difficult for two reasons: large
number of independent degrees of freedom for high values of Re, of order Re9/4,
and complex boundary conditions for the flows relevant in engineering applica-
tions. Nevertheless, slowly the computational power allows reaching the values
of not much smaller than in laboratory flows. DNS furnishes much more detailed
information on the flow fields than experiment. DNS should not be confused with
simulations of model equations. These latter are based on models of turbulence
that are by default incomplete and most probably wrong.
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performed by Mininni, et.al. (2008a and 2008b), it was confirmed
beyond reasonable doubt that clusters of stable Beltrami like helical
structures of opposite signs of helicity shaped as thin and usually
prolonged vortex structures, some stretching through much of the
turbulent volume, is a universal feature of developed turbulence (see
Fig. 1). The clusters of helical structures having the opposite signs
of helicity form the domains in the shape of intense vortex bands or
filaments that are typical for all turbulent flows (see Figs 2 and 3).
These domains are surrounded by the bulk of what appears as largely
disorganized fluid motion.

In other recent works of Matthaeus, et.al. (2008a and 2008b),
the authors experimented with numerically simulated plasma turbu-
lence in magneto-hydrodynamic approximation (MHD). They found
an anomalous distribution of angles of the plasma turbulent veloc-
ity field v and plasma magnetic field B convected by the velocity
field. Consistently the analysis of the solar wind data from satellite
measurements showed similar alignment in the live as opposed to sim-
ulated plasma turbulence. The authors point out that the alignment
is similar to the alignment of velocity and vorticity that occurs in the
Navier Stokes turbulence.5

Let us start from the Beltrami like helical structures and try to
understand what is striking about their presence in turbulence. The
Beltrami flows are defined as the flows where the velocity field vector
is everywhere in parallel to its own vorticity, i.e., mathematically
expressed as follows:

v · ω = v · [∇× v] = v · curlv (0.2)

The Beltrami flows are well known mathematical curiosities. They
are exact solutions of the inviscid Euler equations describing inviscid
(and in that unrealistic) flows, but having certain fascinating math-
ematical properties that were exposed in the works of Arnold (1965,

5Solar wind is well conducting turbulent plasma blown from Sun. The mag-
netic field in turbulent plasma is convected by the turbulent velocity field in a
manner not dissimilar to convetion of vorticity field generated by this velocity
field. Although the analogy is not at all total, since B is an extranous to v field
while ω = curlv, it is nevertheless profound in certain manifestations. In par-
ticular, the observed alignment between v and B in turbulent plasma is most
probably similar in nature to the alignment between ω and v in turbulent flows
of neutral fluids.
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Figure 1: It is stated in Mininni, et. al. (2008a) that this is a
zoom on a sample region of high vorticity in the flow. Turbulence
in realizations is very inhomogeneous or intermittent in its structure
and the regions of high vorticity occupy relatively small part of the
total flow domain. Typical vortical structures, actually two merging
vortical structures in the South-West corner, are sampled from this
region with the velocity field lines drawn inside the structure in the
upper image and near the structure in the image below. The authors
claim that the velocity field lines are strongly helical aligning with
the vorticity field lines.

1966 and 1974), but clearly understood by Moffatt (1985). In par-
ticular, Beltrami flows have the maximal normalized helicity value
for given v and ω. c Helicity is a topological invariant, a particular
consequence of the Kelvin’s conservation of circulation theorem in
inviscid flows. In a simplified interpretation of all vortex lines closed
helicity is a well known topological Hopf invariant, an integer measure
of knottedness of divergence free solenoidal vector field lines and in
this case vorticity field lines.6 But generally helicity is a continuous

6More precisely Hopf topological invariant is easy to visualize. It arises for-
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invariant and more complex topological measure defined in a rigorous
mathematical context in Arnold (1965 and 1966).

In the flows of real viscous fluids that are subject to the Navier-
Stokes equations, for which neither energy nor helicity are invariant
anymore because of the molecular scale viscous dissipation, still there
are flows analogous to Beltrami flows which are the exact dynamical
solutions. These are exponentially decaying with time Beltrami flows
that relax asymptotically with time to the state of equilibrium still
fluid at each point and therefore retaining in some sense the invariant
topology of vortex lines, e.g., the normalized helicity (Libin, et.al.,
1987; Libin, 2008).

How would such very particular and obviously coherent flow pat-
terns in a well defined mathematical sense, preserving their distinct
shape and topology appear in the midst of highly variable in space
and time and seemingly disorganized fluid motion? Homogeneous
isotropic turbulence is a pure turbulence model not contaminated
by extraneous complications such as solid boundaries or complicated
thermal sources typical for geophysical turbulence. As such it comes
explicitly under the purveyance of the concepts first clearly expressed
by Richardson in 1922 and culminating in the Kolmogorov theory of
turbulence formulated in 1941, which since then has dominated the
fundamental understanding of turbulence

The Kolmogorov theory postulates that the evolution of turbu-
lence from any and all initial flow conditions is a statistical hierarchy
of homogeneous isotropic and structureless eddies with progressively
decreasing spatial scales randomly filling the whole fluid volume. The
main feature of these eddies is a steady state constant flow of energy
cascading from the larger scale eddies to the smaller ones with the
smallest scale eddies benignly dissipating energy through molecular
viscosity into heat. The main prediction of Kolmogorov theory, the
−5/3 power law energy spectrum for the turbulent velocity fluctua-
tions as a function of inverse scale (or wavenumbers in Fourier space),

mally from the mapping of 3 - dimensional sphere into a 2 - dimensional sphere,
S3 → S2. There is a family of invariants in higher dimensions Sn+1 → Sn and
they are quite often considered in various problems in physics, although they
are not associated with knots that are specific to 3D space. For instance, the
closed line thread like vortices in superfluid helium, which essentially as nearly
an ideal fluid as can be in nature, are characterized by a simple integer topological
invariant-the winding numbers-generated by the mapping S2 → S1.
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Figure 2: Borrowed from Mininni, et. al. (2008b) it shows an ex-
tended image of a flow sub-domain in DNS of turbulence with periodic
boundary conditions. The authors choose a sub-domain in such a way
that everywhere in it vorticity is large by comparison with its own
average, |ω| > 6 < |ω| >. The shown bars indicate the dimensions
of three typical scales: the largest integral scale, nearly the periodic
Box size, the so-called Taylor microscale (defined in such a way that
it is always supposed to be in the inertial range) and the smallest
scale at which viscous dissipation is definitely dominant. One can
see that the high vorticity is organized into extended vortical bands
that themselves tend to bunch together into clusters. Although the
bands and the clusters of high vorticity reach the largest scales in one
dimension their total volume is a small fraction of the total turbulent
flow volume. Altogether the sub-domains of high vorticity are a small
fraction of the total flow domain.
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Figure 3: From the same work of Mininni, et. al. (2008b) it shows
the same flow sub-domain as in Fig. 2, but in violet and red colors
is depicted the helical vortices with opposite sign of helicity. Each of
these vortices is similar to the one from Fig. 1. As the authors claim
only the regions of near to total helical alignment between velocity
and vorticity are painted. Clearly the vortical structures in Fig. 3
almost totally overlap the bands of high vorticity in Fig. 2. Thus
the vorticity bands in Fig. 2 are largely made of the helical cells.
Important is to note that the total helicity of the sub-domain is near
to zero. This shows the power of helicity fluctuations concept as
opposed to average helicity. In each of these cells the alignment is
strong and helicity is near to maximal possible value for the given
absolute values of velocity and vorticity in each of the cells. In other
words they are nearly Beltrami cells.
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has been approximately observed in great many experiments and geo-
physical observations and therefore seems reasonably confirmed, even
though there is still lack of confidence as regards the experimental
accuracy.d But the large scale strongly anisotropic coherent helical
patterns have no place in Kolmogorov turbulence; they are in total
contradiction with the usual wisdom that postulates that turbulence
is made of volume filling structureless eddies.

To be more precise physical experiment, DNS in the last decades,
and of course the atmospheric observations have been long time re-
vealing that the distributions of small distance variations of the flow
field velocity, vorticity, viscous energy dissipation and other related
quantities7 are statistically inhomogeneous and strongly non-Gauss-
ian, in contrast with the velocity field at a point which is primarily
determined by large scale motion and well approximated by the Gaus-
sian law statistical distribution. It has been long known, e.g., Batch-
elor and Townsend (1949) and Batchelor (1953) that the anomalously
large, by comparison with the Gaussian statistical law values, vorti-
cal activity and energy dissipation are situated in bands, filaments
as they are often called, in relatively small flow sub-domains and
temporal bursts of activity. This bunching together in small space
sub-domains and short temporal bursts of intense activity of small
scale dominated turbulent events is known as turbulence intermit-
tency (see Section 5 below). This phenomenon gave rise to the phe-
nomenological fractal models of turbulence, e.g., Kolmogorov (1962),
Obukhov (1962), Novikov and Stewart (1964), Monin and Yaglom
(1975), Mandelbrot (1974), Mandelbrot (1983), etc. These fractal
models of turbulence as a rule saw intermittency as corrections to
the Kolmogorov turbulence affecting high order statistical correla-
tions but not undermining the basic tenets of the cascade theory.8

Intermittency is not a phenomenon found in turbulence alone. It

7That is essentially the quantities expressed via velocity field space and time
derivative

8In particular, fundamentally important for understanding the fractal strucure
of atmospheric turbulence are the works of Shaun Lovejoy and Daniel Schertzer
and co-workers spanning the period of 25 years of atmospheric observations and
theoretical deductions. Their works will be cited when appropriate below, but I
would like to mention that now only few would doubt the multifractal vision of all
important atmospheric and more generally geophysical structure and events and
their importance for forecast and understanding of the atmosphere and ocean.
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is a feature typical of dynamical chaos originating in most nonlinear
dissipative systems. But such endemic intermittency is of course a far
cry from the spatially delineated helical coherent structures that are
observed in the midst of turbulence so clearly and unambiguously.
The coherent helical build-up of the intermittent bands of vortical
activity in the midst of seemingly disorganized fluid motion, in a
model that is closest in mimicking the conditions of homogeneous
isotropic turbulence, shows that it is timely, in fact long overdue,
to reassess both the Kolmogorov theory of turbulence and the still
prevailing feeble interpretation of coherent structures in turbulence.

The observations of Beltrami like helical structures and related
anomalies, made in Mininni,et.al.(2008a) and Mininni,et.al.(2008b),
were largely predated and predicted in the works of previous decades.
The theoretical concept of helical structures or fluctuations and their
connection to the coherent structures (CS) on one hand and inter-
mittency and fractals on the other, in turbulent flows irrespectively
of their origin, was formulated in a series of works published over
a period of time, e.g., Levich (1982), Levich and Tsinober (1983),
Tsinober and Levich (1983), Levich and Tsinober (1984), Levich and
Tzvetkov (1984 and 1985), Shtilman, et.al. (1985), Levich (1987),
Levich and Shtilman (1988), Levich, et.al. (1991), Levich (1996).
In these works the viewpoint was advanced that the coherent heli-
cal fluctuations are the fundamental building blocks of all turbulent
flows. The fluctuations are borne and die at multiple scales, as befits
the general self-similarity and scaling conceptual foundation of tur-
bulence theory, and on a fast time scale that tends to zero in the limit
Re → ∞ in most of turbulent flow space. Because of this fast time
scale the helicity fluctuations were called ’virtual’. The helical fluc-
tuations are of both positive and negative helicity signs, clustering
and screening each other, so that the global helicity in representative
space/time domains remains small, but strictly speaking with mirror
symmetry likely not respected.9

9Althoughh certain violation of global mirror symmetry was observed in DNS
and experiment, e. g., see the references in a footnote below. Nevertheless,
the phenomenon is entirely different from the one caused by a non-zero globall
helicity in the flow. Such global helicity is of little relevance for the fine structure
of turbulence and can be disregarded in most cases. The role of spontaneously
generated global helicity is not discussed here although the effect is most probably
there.
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In each of the virtual helical fluctuations the nonlinear coupling
between the turbulent harmonics is somewhat reduced during their
life time, while the vorticity and vorticity production attain increas-
ing values at their boundaries. The volume occupied by the helical
fluctuations decreases as most of them die out because of the short
life span of helical correlations but eventually the fluctuations attain
stability, or better to say a long enough life time span on a fractal
sub-domain with the material volume tending to zero in the limit
Re → ∞. But at the same time despite their small relative volume
as compared with the total flow domain the helicity fluctuations and
their environs contain most of turbulent activity.

The assumption of self similarity implies that while the volume
occupied by the helical structures tends to zero in the limit Re →
∞, their total bounding surface area tends to infinity. The regions
of decreased nonlinear coupling and on the contrary most intensive
turbulent fields amplitudes, e.g., vorticity generation, overlap each
other in this limit. In other words the helical structures and their
boundaries together become a fractal set of dimension 2 < DF < 3
embedded in the 3D fluid domain.

If the transient fluctuations and stable helical structures in thus
defined sub-domains of flow realizations are indeed present than the
first and simplest experiment would be to measure the distribution
of angles between v and ω fields. The distribution is likely to show
tendency for v and ω to be parallel or anti-parallel. Indeed, in the
pioneering DNS of Shtilman, et.al. (1985), Pelz, et.al. (1985) and
Pelz, et.al. (1986) such anomalous alignment of v and ω was ob-
served as moderate size peaks in the probability distribution function
Pdf(cosθ) = Pdf(v · ω/|v||ω|) near the maximal and minimal values
cosθ = +1 and cosθ = −1. The peaks are natural to interpret as a
contribution from the helical fractal set to the total Pdf(v ·ω/|v||ω|)
in space/time realizations, but also as a relict trace from the transient
helical fluctuations (see Fig. 4). This is why this ”anomaly” persists
typically in representative sub-domains of turbulent flow, including
the domains with low turbulent intensities.10

10The anomalous angle distribution was first numerically established at the very
dawn of the supercomputers era and emerging numerical studies of the Navier -
Stokes equation, in Shtilman, et al. (1984) for decaying Taylor - Green vortex
and in Pelz, et al. (1985) for the channel flow turbulence. Many at the time
saw it as and artifact of numerical simulations. Since then the alignment was
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Figure 4: From Farge, et. al. (2001) it shows the Pdf(v ·ω/|v||ω|) =
Pdf(cosθ) in DNS of turbulence in a box with periodic boundary con-
ditions. In this interesting DNS the authors using a mathematical
method of wavelets sampled out what they call a coherent compo-
nent of the velocity field in turbulent flow. This coherent component
shows a quite distinct alignment of v and ω = curlv fields. The
incoherent component shows no alignment. But apparently the to-
tal velocity field shows similar alignment. What it means likely is
that the regions of low vorticity typically retain certain coherence as
well and can be seen as a relict trace of previously strongly coherent
helicity fluctuations. The Pdf results are totally similar to the ones
obtained in much earlier works of Shtilman, et. al. (1985) and Pelz,
et. al. (1985).

It is likely that for similar reasons and to the same end there is an
observed anomalous alignment between the velocity field and mag-
netic field in turbulent plasma described in Matthaeus, et. al. (2008a
and 2008b) for DNS of MHD turbulence and actual observations of
real turbulence in solar wind (see Fig. 5 and Fig. 6). The authors
reasonably asserted that the cross-helical patches similar to fluid tur-
bulence helical clusters exist in plasma turbulence as well, but with

confirmed in many DNS,e.g., in Pelz, et al. (1986), Levich and Shtilman (1988),
Farge, et. al. (2001). The alignment to some extent was also confirmed in
unique experimental studies first initiated by A. Tsinober and E. Levich. The
excruciatingly difficult measurements of vorticity and alignment were reported in
Kit, et.al. (1987, 1988a and 1988b), but caused soem controversy, Wallace and
Balint (1990). The experiment were followed by Kholmyansky, et. al. (1991) and
Kholmyansky, et al. (2001).
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substitution of vorticity by the magnetic field.

The reduction of non-linear coupling in the hierarchy of helical
fluctuations is of great significance and allows in the long run turbu-
lence in fluids as we see it in nature to exist (Levich, 1987; Shtilman
and Polifke, 1989). It is the mechanism of intermittency and the rea-
son for the relative stability of large scale vortical structures in the
flows of fluids in nature. It was asserted in Levich (1987) that a spa-
tially and temporally small active sub-domain formed by the hierar-
chy of helical fluctuations generates the Kolmogorov spectrum. This
assertion allowed calculating the reduction of the nonlinear coupling
in the structures in this sub-domain and subsequently the fractal di-
mension of this sub-domain. The calculation led to DF = 2.5 in the
limit Re→∞. Although the Kolmogorov energy spectrum is correct
the mechanism that forms it is different from the one postulated in
the Kolmogorov theory. Subsequent to the helical build-up of tur-
bulence it was proposed in Levich (1980) and Levich (1987) that the
interactions in turbulent flows are inherently non-local with the flow
harmonics of widely disparate scales strongly interacting with each
other. This is again contrary to the tenets of Kolmogorov theory, but
strongly supported by the sited DNS.e

Somewhat similarly with the above concept Moffatt (1985) and
Moffatt (1986) suggested that turbulence generally consists of un-
stable/shortlived in space/time Beltrami blobs separated from each
other by the surfaces of intensive dissipation. Moffatt (1984) also
suggested that the Kolmogorov energy spectrum is formed not by
the Kolmogorov mechanism, but via induction by a particular class
of vortical spiral singularities embedded in turbulence midst. His
analysis and classification of the unique properties of the Euler flows
(stationary solutions of the ideal fluid Euler equations) and in par-
ticular of Beltrami flows is imperative for understanding the helical
concept of turbulence.

Over two and a half decades have passed since the first publica-
tions on the helical concept of turbulence. And only now the experi-
mental mass of evidence and DNS brought back a positive momentum
to studying this concept. While the proof of presence of coherent he-
lical structures seems uncontestable after the works cited above their
origin and the fundamental role they play in turbulence remain to be
further explained.f
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Figure 5: From Matthaeus, et. al. (2008a) it shows Pdf(v ·
B/|v||B|) = Pdf(cosθ) for DNS of MHD turbulence in a box with
periodic boundary conditions. The different curves correspond to
different runs with different initial and forcing conditions. The qual-
itative similarity with Fig. 4 is pretty obvious.

Figure 6: The same as in the previous figure, but for satellite mea-
surements over long time periods and different orientations in relation
to the solar wind. It is clear that after averaging over all orientations
the resulting figure would look strikingly similar to the one obtained
from DNS (for instance combine away and towards sectors).

The assertion reiterated herein is that turbulent flows in labo-
ratory and in nature, in boundary layer flows, in atmosphere and
oceans, in neutral fluids, and probably in electrically conducting plas-
mas, are made of helicity (or in the case of MHD plasmas cross helic-
ity) fluctuations in various stages of birth, evolution and disintegra-
tion. The all scale helical structures of opposite sign are not a cor-
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recting feature superimposed on Richardson-Kolmogorov turbulence
structure, imagined as made of randomly dispersed and structure-
less fluid eddies, they are rather the turbulence. And long life time
stability of relatively large scale helical blobs bunched into small sub-
domain is made possible by diminishing and balancing the nonlinear
coupling in the Navier-Stokes equations that creates them and strives
to destroy. Although the long-lived helical structures occupy only a
vanishingly small fraction of the fluid space/time domain they cluster
together like cells with opposite sign of helicity forming large patches
of the most intensive events, e.g., coherent patches of vorticity and
vorticity generation that are usually observed as CS. It is this do-
main that is asserted to sustain the Kolmogorov energy spectrum
and turbulence in general in the whole fluid domain.

It is almost trivial to add that the solid boundaries most actively
facilitate the coherent helical structures birth and death, e.g., Levich
(1996), since in general turbulence originates most readily and is most
intensive in the boundary layer (BL) near the solid boundaries. The
CS in BL turbulence are just the elongated domains of intense vor-
ticity and it was conjectured that they are made of strongly helical
cells of opposite sign of helicity, so that the total helicity is zero or
small, but with reduced nonlinear coupling inside each cell providing
relative stability to them and their environs. Equally they exist as
elongated vortex bands in turbulence far away from boundaries and
in turbulence created with maximal nearness to (statistically) homo-
geneous and isotropic conditions, e.g., turbulence past a grid and in
BigBox numerical turbulence as is clear from the cited works, and
may be most importantly in atmospheric, oceanic and plasma turbu-
lence. To avoid semantic ambiguity and intermittent choice of words
patches, bands, or filaments, I suggest to call the coherent structures
by what they really are - Beltrami cellular clusters - BCC.

The above assertions were in part made before. In what follows
they will be reiterated and further quantitatively justified with con-
fidence supported by accumulated experimental evidence.g

1 Basic Equations and Definitions

This work is directed not necessarily to experts in fluid mechan-
ics but to a more general academic audience. Turbulence is so an
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amazing phenomenon that science oriented audience of general pro-
file deserves to be updated on progress in its understanding. This is
why it is prudent to start from the beginning.

The basic equations governing the flows of incompressible viscous
fluids are the Navier-Stokes equations:

Dv/Dt = ∂tv + (v · ∇)v == −∇P + ν∆v + F, (1.1)

or in index notations useful for anisotropic flows:

∂tvi = ∂k(vivk + δikP ) = ν∂k∂kvi + Fi (1.2)

In the Eqs. (1.1) - (1.2) P is pressure, Fi is an external body force
acting on the fluid assumed to be a divergence free (∇·F = ∂iFi = 0),
∂t = ∂/∂t; ∂i = ∂/∂xi;∇2 = ∂2i = ∆ is the Laplacian operator, ν is a
kinematic fluid viscosity, the density ρ is set to unity and the fluid is
assumed incompressible, so that the velocity field is divergence free:

∇ · v = ∂ivi = 0. (1.3)

The quadratic nonlinear term in The Navier-Stokes equations consist
of two parts. One is the inertial convection term from the general
definition of the full derivative D/Dt = ∂t + v · ∇, in the Eulerian
(field) representation of continuous media. 11 The other is the obvi-
ous pressure gradient force, which is in incompressible fluids not an
independent field, but is determined from Eq. (1.3). This is clear by
applying the divergence ∇ operator to the both sides of Eq. (1.1)
with the result:

P = −∆−1∇ · [(v · ∇)v]. (1.4)

Together with boundary conditions, for instance the usual for appli-
cations no-slip boundary conditions at the solid surfaces bounding
the flow:

vS(r, t) = 0. (1.5)

The Eqs. (1.1) (1.4) in principle fully define the velocity field and
pressure would it be laminar or turbulent flow.h If to set ν = 0, a

11In the Eulerian representation a fluid flows in relation to an observer so that

D/Dt = ∂t + vi∂i = ∂t + v · ∇
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physically impossible situation that would correspond to the infinite
molecular path length, than the Navier-Stokes equation becomes the
Euler equations. The latter are the Newton equations for the contin-
uous media driven by the pressure gradient moving in relation to an
observer:

Dv/Dt = ∂tv + v(∇ · v) = −∇P. (1.6)

Also in this approximation, which is never true in reality, the non-
slip boundary condition does not hold since there is no friction at
the boundaries. Instead a less restrictive boundary condition is ap-
propriate stating that the normal to the surface boundaries velocity
component is zero should be used, i.e., n · vS(r, t) = 0.i

It is instructive to rewrite the Navier-Stokes equations in the so-
called rotational form. Setting the non-fundamental force F = 0 for
the moment and using identical vector transformations the equivalent
form for the Eq. (1.1) is as follows:

∂tv − [v × ω] = −∇(P + v2/2) + ν∆v, (1.7)

or in tensorial form:

∂tvi − εiklvkϕωl = −∂k(P + vivk/2)δik + ν∆vi, (1.8)

because of the identity:

∂k(vivk) ≡ −εjklvkωl + δik∂k(vlvl)/2, (1.9)

where ω = [∇× v] = curlv, or in the components ωi = εikl∂kvl
is the vorticity field introduced in Foreword. Applying the curl =
∇× operator to both sides of Eq.(1.4) we obtain even more compact
looking form of the Navier-Stokes equations:

∂tω − curl[v × ω] = ν∆ω, (1.10)

or in another useful form the Eq.(1.10) can be written as follows:

Dtω = ∂tω + (v · ω = −(ω · ∇)v + ν∆ω. (1.11)

In principle for a given vorticity field the velocity field v = (∇×)−1ω
is fully defined everywhere in fluid domain, calculated by means of an
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integral expression similar to Bio-Savart relation between the mag-
netic field and the current creating it, or the other way around.12

Therefore the Eq. (1.10) is a closed equation for the vorticity field.

This way of rewriting the Navier-Stokes equation is important and
revealing for understanding fluid dynamics. In the approximation of
ideal fluids ν = 0 the equation for ω becomes one from a wide class
of dynamical equations for the so-called ”frozen-in” fields convected
by a fluid motion. Frozen-in fields can be scalars, vectors, tensors
or anything else that defines a field. In fluid mechanics the frozen-in
fields are usually scalar and vector fields. If a frozen vector field line
at zero time passes through a certain material fluid line belonging
to a fluid element then for all other times it will pass through the
same material line. The vector lines are rigidly attached to the fluid
particles through which they pass. If the fluid elements are running
away from each other, as they do in a turbulent (or any chaotic) flow
then the corresponding frozen field lines will be stretched indefinitely
to follow the motion of fluid particles. The nonlinear term in the
left side of Eq. (1.11) is actually a passive convection of the field
lines, while the nonlinear term on the right side of Eq. (1.11) is
responsible for the stretching of the vector field line. If one considers
a scalar field then the analogous equation of motion will have only
a convection term left. For instance the dynamical equation for the
heat transfer is:

∂tT + v · ∇)T = κ∆T, (1.12)

where κ is the molecular heat conduction coefficient. When κ = 0 Eq.
(1.12) describes a passive scalar convection. Even such simplest sit-
uation becomes very complicated when the velocity field is turbulent
or merely a given random field (e.g., Falkovich and Fouxon, 2005).13

12One should not forget the potential part of the velocity field that should be
restored to have the imcompressibility condition ∇ · v = ∂ivi = 0 fulfilled (e.g.,
Batchelor, 1979). In practical applications the solution of Eq. (1.6) and restora-
tion of the potential part of the velocity field from the corresponding Laplace
equation is difficult for most boundary conditions, except infinite media and peri-
odic boundary conditions. Nevertheless, the fact that the vorticity ω field can be
seen as creating the flow v field is very significant for understanding turbulence.

13Convection of passive admixtures is a complex problem it nevertheless seems
tractable. In part this may be the reason why it has become very popular in recent
years. However it unfortunately does not take us much closer to understanding
turbulence, or even the probably simpler problem of convection of vector fields,
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An important and much more complex example is the magnetic
field B convected by a flow of conducting plasma. If the plasma ve-
locity is stationary than the whole set of MHD equations degenerates
into a dynamical equation for the magnetic field and is as follows (see
Appendix):

∂tB− curl[v ×B] = η∆B, (1.13)

where η is the electric conduction coefficient. When η is substituted
by ν and B by ω the Eqs. Eqs. (1.13) and (1.10) are formally
the same. When ν = η = 0, respectively in (1.10) and (1.13), the
fields are frozen in the fluid and their lines move together with the
material fluid elements to which they are attached at t = 0. There
is a profound analogy between the kinematic properties of frozen-in
vector fields. The study of frozen-in fields goes all the way back to
the 19th century Kelvin’s theorem of conservation of circulation or
what is the same the theorem of conservation of vorticity flux and
similar theorem of conservation of magnetic flux. More recently there
has been renewed interest to the frozen-in fields since their properties
are closely connected to mathematical knots and other topologically
invariant objects. With respect to fluid mechanics this subject was
analyzed by Arnold (1965, 1966), but deeply understood and made
clear by Moffatt (1985).

The dynamics of frozen-in fields is peculiar even for the simplest
case of a scalar additive convected by a random velocity field. But
for the vector fields it is extremely rich in results. For instance the
dynamo effect, the exponential growth of magnetic field in moving
conducting fluids, so important for the origin of magnetic field in
astrophysics and elsewhere, is a result of this peculiar frozen-in dy-
namics.14 In a random flow field the fluid particles generally ”run
away” from each other like in Brownian motion, so that the distance
between any pair of them increases with time. In consequence the
magnetic field lines stretch by these ”run away” fluid particles be-
cause the lines are frozen into the fluid particles. The stretching of

e. g., the magnetic field, by turbulent velocity field (e. g., Moffat, 2001)
14In this case the flow field should not be necessarily the real turbulent flow

field as it develops from the Navier-Stokes equation but some stationary random
field with non-zero helicity coarsely modeling the integral properties of the tur-
bulent flow field. Eventually only the integral helicity turns out to be a relevant
parameter for the dynamo growth of the magnetic field.
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magnetic field lines is necessary (but not sufficient) condition for the
growth of magnetic field.j The terms in (1.11) and (1.13) responsible
for the field lines stretching are −(ω · ∇)v and −(H · ∇)v, respec-
tively for ω and H field lines.

The difference between Eq. (1.13) and Eq. (1.10) is that the mag-
netic field is convected by a given fluid motion, so that Eq. (1.13) is
quasi-linear, but the vorticity field is the curl of the velocity field and
hence Eq. (1.10) is fundamentally nonlinear. In fact for a given dis-
tribution of vorticity the velocity field can be determined everywhere
by means of induction from an integral relation similar to Bio-Savart
induction law relating current and the magnetic field it generates
(e.g., Batchelor, 2000). In other words the vorticity field can be seen
as a principal one generating the flow field such that the vortex lines
are frozen in this flow in ideal fluids. In real turbulent motion the
fluid particles also ”run away” from each other, so that the distance
between each two initially closely adjacent fluid particles grows expo-
nentially with time for short times before the nonlinearity effects take
hold. The vortex lines are stretched by this run away motion since
they are frozen into the fluid particles. This stretching of vortex lines
results in the rapid growth of vorticity amplitude and is generally be-
lieved to be the basic mechanism of developed turbulence formation
in fluids. Despite the differences the kinematic similarities between
the MHD and the Navier-Stokes equations have profound method-
ological implications for the theory of turbulence and therefore I will
discuss this analogy and the implications below.

Since Re defined by (0.1) is the only intrinsic dimensionless pa-
rameter in the Navier-Stokes equations the flows of identical geom-
etry but with different velocities, or integral scales, or viscosity are
fundamentally the same as long as Re remains the same. This is the
famous self-similarity true for all flows. This is why when we consider
a steady pipe flow for instance we can be confident that it is enough
to consider just one steady pipe flow and then it will be the same for
all the other steady pipe flows with the same Reynolds number value.

As was pointed out in Foreword for most of the flows in nature
the Reynolds numbers are very large, with notable exception of cap-
illary and some biological flows. Thus practically all flows are very
strongly turbulent. It seems tempting then to seek a theory of turbu-
lence in the limit of Re→∞ . The self-similarity than indicates that
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in the limit Re→∞, the flow properties should become Re indepen-
dent, i.e., universal as long as the boundaries and geometry remain
the same or their influence can be disregarded. Of course this does
not mean that one can just omit the viscous term in Navier-Stokes
equations and use the ideal fluid description. The limit Re → ∞ is
not at all the same as ν = 0. Because the viscous term is the higher
derivative term and there are always such small scale spatial varia-
tions of the turbulent velocity field when it becomes dominant. This
may be a trivial comment that nevertheless is important to bear in
mind. From the outset it should be noted that it is not at all granted
that the universal limit Re → ∞ exists. Or it may exist for some
velocity related quantities and not to exist for others. In any event it
is instructive to rewrite the Navier-Stokes equations in dimensionless
units as follows:

Xi = xi/L;Vi = vi/vL;P ′ = P/v2
L; τ = νt/L2. (1.14)

Then the Eqs. (1.1) are as follows:

∂τVi + Re∂k(ViVk + δikP
′) = ∂2

kVi. (1.15)

The Eqs. (1.1) can be also rewritten in a different way such that
the Re−1 factor stands in front of the viscous second space derivative
term in the r.h.s. of the Navier-Stokes equations. But the way it is
written in (1.15) is more suitable for the further exposition.15

There are (at least) three quantities that are especially important
for the theory of turbulence: energy (per unit mass), helicity and
vorticity. Let us start from the energy per unit mass (it is reminded
that the fluid density is set to unity, ρ = 1). Multiplying Eq.(1.2) by
vi and integrating over the fluid volume one finds after some simple
rearrangements (i = 1, 2, 3 and ∂k = ∂/∂xk):

∂tE = ∂t

∫
v2
j /2dV =

∮
[vk(v2

i /2 + P )− 2νvieik]dSk+

−2ν

∫
e2
ikdV +

∫
viFidV , (1.16)

15In what follows we shall alternate dimensionless and dimensional units with-
out changing the notations when convenient.
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where the integrand of the surface integral is the energy flux:

jEk = vk(1/2v2
i + P )− 2νvieik, (1.17)

where eik is the stress (or deformation) tensor typical for continuous
media:

eik = 1/2(∂kvi + ∂ivk). (1.18)

The remaining two terms on the r.h.s. of Eq. (1.16) are the energy
increasing due to the work done by the body force F and the energy
decreasing due to dissipation by viscous forces. If the surface is a
solid boundary, at which v = 0 the surface integral vanishes, the
nonlinear coupling term naturally conserves energy, and one is left
with the energy acquisition due to the external force balanced by
the dissipation terms. If one sets both dissipation and the force zero
than the Eq. (1.16) is the obvious energy conservation law in inviscid
fluids. The local viscous dissipation rate per unit volume per unit
time is hence:

ε(r, t) = −2ν(eik)2 = −ν/2(∂kvi + ∂ivk)2. (1.19)

Apart from energy a quantity fundamental for turbulence description
is a quadratic scalar measure of vorticity intensity-entrophy Λ = ω2.
One can derive from Eq.(1.11) the following balance equation:∫

∂tΛ/2dV =

∫
ω · (ω · ∇)v − ν

∫
[∇× ω]dV. (1.20)

In (1.20) the integration is assumed over the infinite volume or a
compact flow domain. In a steady state it follows then:∫

ω · (ω · ∇)vdV =

∫
ωiωk∇kvidV > 0. (1.21)

The meaning of (1.21) is that the nonlinear coupling while conserv-
ing energy generally increases the global entrophy at the same time
through the vortex lines stretching. It will not only for certain config-
urations of vorticity field and in particular for such that are solutions
of the inviscid Euler equations and thus cannot be in a stationary
equilibrium with viscous dissipation. The relation (1.20) is one of a
few exact relations that can be derived from the Navier-Stokes equa-
tions and therefore is of special value. It is easy to see also with some
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trivial vector manipulations that the viscous dissipation term in the
balance equation (1.16) can be rewritten in the following identical
way:

−2ν

∫
e2
ikdV = −

∫
ω2dV. (1.22)

This is an important relation showing that as enstrophy grows si-
multaneously the global energy viscous dissipation does (note that of
course 2e2

ik 6= ω2 locally).
Helicity is another peculiar invariant of the inviscid Euler equa-

tions. Let us introduce helicity density pseudo-scalar product h =
v · ω and helicity H as follows:

H =

∫
hdV =

∫
v · ωdV. (1.23)

Then a simple calculation shows that:

∂tH = ∂t

∫
hdV == ∂t

∫
v · ωdV =

=

∮
[ωk(1/2v2 − P )− vkh]dSk − 2ν

∫
ωiεijl∂jωldV , (1.24)

( ωiεijl∂jωl = ω · curlω, εijl is the absolutely anti-symmetric unit
tensor). The integrand in Eq.(1.24) is the helicity flux similar to the
energy flux (1.17):

jHk = ωk(1/2v2
i − P )− vkh. (1.25)

If the integration is over a compact domain D bounded by a vor-
ticity surface ∂D such that the normal to the surface vorticity com-
ponent is zero, ωn|∂D = 0, in particular over infinite flow domain, the
surface integral vanishes and consequently helicity is the exact invari-
ant of the Euler equations, as energy is. Helicity is a pseudo-scalar
and can be positive or negative.16 The same is true for the viscous
term in Eq. (1.24). In difference to the energy and vorticity balance
equations the viscosity can be either a sink of helicity or a source.

16Solid boundaries at which of course ω · n|∂D are the helicity sink/source. At
the solid boundaries the inviscid flows generally form the tangential discontinuities
in the velocity field and therefore the vorticity sheets.
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Helicity is non-zero only for the flows lacking the reflectional (mirror)
symmetry and as was mentioned above is a topological invariant.17

Briefly helicity is usually interpreted as a measure of knottedness
of divergence free solenoidal vector field lines, and in this case the
vortex lines: helicity is proportional to the number of knots and link-
ages made by the vortex lines. The helicity then would be a discrete
quantity akin to topological Hopf invariant. In fact a more general
interpretation of helicity as a continuous topological invariant mea-
sure was analyzed by Arnold. The vortex lines in a compact fluid
domain can be closed, knotted or not, or end at the boundaries. But
they may have a non-trivial topology, e.g., winding about surfaces
of arbitrary complexity (for non-differentiabler velocity flow field), or
ergodically filling a fluid sub-domain without end.k In the ergodic
configurations the vortex lines can form asymptotically close linkages
and knots and in general possess arbitrarily complex topology that
remain topologically invariant under smooth (but not necessarily in-
vertible) mappings induced by fluid motion.

Helicity is a particular topological invariant of flows of inviscid flu-
ids. However helicity is not the only invariant defining the topology
of divergence free vector fields. It is easy to construct a vector field
configuration that has zero helicity but is topologically complex and
knotted, a usually demonstrated simple example being the Boromean
ring, e.g., Moffatt (1969). In general there exists an infinite family
of topological invariants for frozen-in fields more nonlinear than he-
licity as was shown in Tur and Yanovsky (1993). They are all the
consequences of the Kelvin’s theorem of conservation of circulation
in inviscid fluids. It is however the connection between the helicity
density and the nonlinear term in the Navier-Stokes equation that
makes suggestive the role that helicity may play in turbulence: max-
imal helicity in a compact flow domain or sub-domain is given by
Beltrami flows yielding zero to the nonlinear coupling term in the
Navier-Stokes equations.

Note that the viscous term in the balance equation (1.24) is not
necessarily a dissipative one, meaning that it does not necessarily
decrease |H|. The viscosity can reduce the absolute value helicity
or generate it. As helicity is not positively defined so νω · curlω is

17Analogous to helicity invariant for Eq.(1.13) is cross helicity A =
∫

v ·BdV.
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not. Generally there is no need for external helical forces to create
a non-zero helicity in a turbulent flow. Although quite obvious this
property results in surprising consequences for turbulence structure.

2 Kolmogorov Theory of Homogeneous
Isotropic Turbulence (K41): Part 1

The Kolmogorov theory of homogeneous isotropic turbulence-HIT-
has been dominant for over half a century among the scientists seek-
ing fundamental understanding of turbulence. The Kolmogorov the-
ory is an important subject of geophysical studies. Many geophysi-
cists view turbulence from a fundamental view point may be because
they are best exposed to its many grandiose manifestations. On the
other hand practitioners of turbulence in civil engineering and aero-
nautics who are mainly concerned with turbulence near to the solid
boundaries, highly anisotropic boundary layer (BL) turbulence, usu-
ally have very limited use for the Kolomogorov theory, some of them
viewing it as may be correct but for a highly idealized model that
is not relevant for real life applications. Turbulent BL flows are full
of structures. Although these structures were not given real mathe-
matical description they are clearly visualized, so that the engineers
are convinced that they are all important in their contribution to the
physical parameters important for applications, e.g., heat and mass
transfer, turbulent friction (drag) at the boundaries, etc. There are
no such structures in the Kolmogorov model of turbulence. Thereby
follows the usual and liely false argument that CS is the intrinsic
feature of specifically BL turbulence.

On the other hand the celebrated prediction of Kolmpogorov the-
ory, the −5/3 power law for the energy spectrum is observed in lab-
oratory experiments modeling HIT, e.g., decaying turbulence past a
grid and in part in geophysical phenomena, albeit with modifications
and degree of uncertainty.l This law is to some extent confirmed in
DNS, the Reynolds numbers are not high enough for confidence. The
most surprising thing about this spectrum is that it is observed even
in conditions remote from HIT such as for instance in large scale and
highly anisotropic atmospheric flows.

The Kolmogorov theory has been so dominant and for such a long
time among so many thinking deeply on the nature of turbulence that
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it has become almost an Aristotelian must. It is very difficult to make
even a slightest dent in its basic postulates. Because of this and for
immediate reference by readers it is useful to remind here briefly the
main tenets of the theory even though it has been done in thousands
of papers before in dozens of different ways. From the outset it is
necessary to state that although some of the basic principles of Kol-
mogorov theory will be asserted wrong here the Kolmogorov energy
spectrum will remain intact. However the physics behind the spec-
trum is quite different from the one postulated in the Kolmogorov
theory or implied by it. The Kolmogorov theory is often portrayed as
a simple scaling relation for the flow energy spectrum, i.e., the distri-
bution of energy of turbulent motion among different scales of motion,
the velocity harmonics. But in actual fact the theory is very com-
plex logically, although the mathematics is indeed simple. It relies on
deep intuition into the nature of the Navier-Stokes equations which
while cannot be solved still can be analyzed to some, admittedly lim-
ited, degree and furnish indications to at least certain features and
properties of turbulent motion. Such analysis of the Navier-Stokes
equation had been carried out by generations of scientists and engi-
neers for over a half century prior to Kolmogorov contribution and
surely played role in the formation of the Kolmogorov theory of 1941.

The Kolmogorov basic concept of 1941, often called K41, starts
from the preceding poetic observation of Richardson made quite ear-
lier in 1922 that rhymes ostensibly like this:

Big whorls have little whorls,
Which feed on their velocity;

And little whorls have lesser whorls,
And so on to viscosity (In the molecular sense)18

Laminar flows are driven by extraneous forces, like pressure gra-
dient in pipe flows. The mechanism for the laminar flow to become
turbulent is, as was emphasized above, a distinct scientific problem
beyond the scope of this paper. The fact is that laminar flows are
almost always unstable. The simplest way to obtain turbulence is to
stir fluid in a semi- random way. Imagine a paddle stirring fluid in

18This rhyme is quoted and misquoted by many. It carries such clear and
simple picture of hierarchy of whorls that it is impossible to resist the temptation
to quote it once again
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a large pail. Obviously this paddle can create a whorl or a vortex of
the size comparable or bigger than the size of the paddle. This prime
vortex size will be denoted as the integral scale L. So far the motion
is laminar. But the prime vortex or vortices are totally unstable and
decompose into smaller vortices customary called eddies. And these
eddies will decompose into smaller eddies and then into even smaller
eddies and so forth till such time when eddies become small enough so
that the viscous term in the Navier-Stokes equations becomes dom-
inant, it is recalled that it is the second order space derivative of
the velocity field, and these smallest viscous scale ld << L eddies
dissipate their motion into heat. Obviously the number of ld scale
eddies is much larger than the integral scale L eddies, since the to-
tal incompressible fluid volume remains constant. The whole process
can be likened to a cascade of water through the many steps in some
waterfalls before sinking in a water reservoir below. But in this case
the energy cascades through the eddies not in physical space but in
the space of scales filling the same fluid domain.

The external forces are opposed by the internal viscosity friction
of fluids and if there are boundaries by their friction at the boundaries
In order for a steady state to set it should be that the same amount
of energy as is injected into fluid by the stirring paddle to generate
integral scale eddies is dissipated into heat by the many more small
viscous scale eddies: the viscous forces balance the external forces
so that the work done by the external forces is equal to the energy
dissipated by the viscous forces.

The basic postulate of Kolmogorov theory is that the instabilities
of integral scale laminar flow give rise to progressively smaller scales
motion. As in the picture of Richardson the big eddy generates pro-
gressively smaller and smaller eddies. The reason and possibility for
eddies splitting into ever smaller eddies lies in the nonlinear nature of
the Navier-Stokes equations for the velocity field. The simple mathe-
matical details are discussed below in the next Section, but it is quite
clear that when the Eqs. (1.1) - (1.3) are rewritten in Fourier space
for the velocity field harmonics v(k,t) as a function of wave vectors
k:

v(k,t) = (2π)−1
∫

v(r, t)e−ik·rdV. (2.1)

The quadratic nonlinear term couples triads of velocity harmon-
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ics, v(k), v(q) and v(k− q) or the triads of eddies in the space of
scales and therefore generates in general different triadic scales of
fluid motion. But still it is a non-trivial assumption in the spirit of
Richardson that the generated scales of the velocity harmonics are
predominantly smaller than the prime characteristic scale of fluid
motion that is called the integral scale L. The integral scale can be
associated with an external body force acting on the flow, or with a
leading scale of natural instabilities of the incipient laminar flow, e.g.,
caused by interaction with boundaries. But in principle the non-linear
interactions could have created the opposite process to cascade, the
growth of eddies, or what is usual to call the inverse cascade. How-
ever, most probably as a rule the inverse cascade does not realize in
3D world.19

The next fundamental postulate of Kolmogorov is that in the limit
of high Re and after many cascade steps the small scale eddies of tur-
bulence are universal, isotropic and homogeneous. That is to say that
a turbulent motion that ensues from the initial integral scale motion,
at the scales l << L become self similar and universal. Therefore it

19In 2D world on the contrary the inverse cascade would be a reality and eddies
would predominantly grow in size rather than become smaller (e.g., Kraichman,
1962). The expectations of many including myself had been that the inverse
cascade in one way or another would be realized in the flows like large scale
atmospheric flows where the horizontal scales of motion are very large by com-
parison with the vertical depth of Earth atmosphere; the latter is limited by
gravity. The inverse cascade would have been an easy and very tempting mecha-
nism for formation of large scale atmospheric structures. These expectations are
almost certain to be unfulfilled. The flows anisotropy does not make turbulence
2D and the inverse cascade does not occur. On the contrary, most probably the
general properties of the turbuleny flows remain very much the same despite the
strong disparity between the scales of fluid motions in different dimensions. If
inverse cascade realizes it is only as some sort of instabilities, or fluctuation in
the otherwise unidirectional flow of energy from large scales to small ones. In this
one might invoke a philosophical wisdom, akin to the second law of thermody-
namics in equilibrium systems of which turbulence is not the one to be sure, that
the real world all non - equlibrium systems tend to have a dominant propensity
for decomposition and dissipation. And that the growth in size and extent of
organization as is sometimes observed is a temporal fluctuation that should be
strongly driven by appropriately arranged external forces. But this may be wrong
or incomplete wisdom since we know that in turbulence the dissipation is possible
only if BCC are formed. In anisotropic flows BCC may stretch indefinitely in
the flow direction since there are no apparent scales limiting the size of BCC in
unbounded direction.
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should be independent of the prime flow integral scale L and of Re.
The independence of L and of Re signifies that the motion at these
scales is totally dominated by the local in wavenumbers nonlinear
couplings. Let us comment that the assumption that only local non-
linear coupling remains would indicate that somehow the non-linear
term in Eqs. (1.1) - (1.3), which generally describes all the inter-
actions would reduce in some rigorous mathematical analysis of the
Navier-Stokes equation, if such was possible. Some of the interac-
tions, the non-local ones, would cancel out and only the harmonics
with the local triads, such that all the three wavenumbers |k| , |q|
and |k− q| are the same order of magnitude, would remain. This is
an important postulate of locality of interactions in Fourier space to
bear in mind.

On the other hand by the nature of Eq. (1.1) there are some
relatively small viscous scales of order of ld at which the linear vis-
cous term in Eq. (1.1), since it is the second order velocity field
space derivative, would necessarily become dominant for any given
arbitrary large value of Re. When eddies become so small the vis-
cous friction just dissipates their motion into heat.20 Also, the uni-
versality naturally implies isotropy and homogeneity of small scale
eddies in the inertial range after many steps of cascade, since there
is no singled out scale in the inertial range to associate with either
anisotropy, or inhomogeneity. This is the essence of the Kolmogorov
HIT model. For consistency let us remind briefly the statistical math-
ematical frame of this model.

The values of all turbulent fields are extremely variable in space
and time and therefore it is natural to consider v(r,t) as a random
function superimposed on the mean flow velocity, including the case of
zero mean velocity. If the turbulent velocity were, indeed, a random
field it would be fully characterized by the probability density:

W {v}Dv = W{v(N)}d(N)v(N) =

= limN→∞W{v(r1, t1),v(r2, t2), ......,v(rN, tN)}dv1v2....dvN,
(2.2)

20The energy spectrum is usually assuemd to be exponentially decaying in the
viscous subrange of wavenumbers (Monin and Yaglom, 1975). The situation may
be more complex than this in reality
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where the functional W{v} gives the probability of having certain
velocity field space/time 4D = (3 + 1) realization, at all the points
in space and at all times, in the multidimensional functional space of
all possible realizations.

If homogeneity and steady state of the velocity field are assumed,
as befits HIT model, then the turbulent flow can be described by
means of the velocity correlation functions of different orders at all
points and all times, i.e., by all correlation functions of the type:

< v(r1, t1), .....v(rN, tN) >=< v(0,0), .....v(rN−1, tN−1) >=

=

∫
ΠN,M
i=1 v(ri, ti)W{v}Dv. (2.3)

In principle the knowledge of all the 1, 2, ...N, 1, 2, ...M space/time
correlation functions, if they exist and are finite in the limit ofN,M →
∞ would be equivalent to the full knowledge of v(r, t).

In real experiments the ergodic assumption is applied and the
ensemble averaging is understood in reduced sense as the time aver-
aging over the values of v(r, t) at a point. This is because practically
all measurements can be made only at one, or at best few points in
order to calculate the velocity derivatives, in a fluid flow. In numer-
ical simulations even further approximation is usually accepted. If
the space-time lattice on which the discretized v(r, t) is calculated is
dense enough, than the space and time averaging over the grid points
is assumed to be sufficient for accurate calculations of the real en-
semble averaged correlation functions. Even if one space realization
of turbulence is represented by large enough N it is enough to cal-
culate the space average for certain quantities. This is what is done
usually in DNS for the models of decaying turbulence. In this model
turbulence is triggered at t0 by injection of energy into flow and then
allowed to evolve in time as it follows the Navier-Stokes dynamics. In
real DNS even now the number of grid points is still too limited for
calculating high order correlation functions. Moreover since some of
the basic quantities, enstrophy and its generation rate for instance,
are determined by relatively small subsets of grid points.

The experiment in decaying turbulence shows that for one space
point, one time velocity v(r, t), the probability functional W{v}Dv
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reduces to a nearly Gaussian distribution function. But W{v}Dv is a
strongly non-Gaussian functional for space-time variations of velocity
at two or more points or its space derivatives related quantities, such
as stress tensor eik, vorticity ω, etc. This deviation from the normal
Gaussian law is associated with the phenomenon of intermittency.21

But let us go back to the Kolmogorov theory that does not concern
itself with intermittency.

The velocity of the largest eddies vL is comparable to the total
variation of velocity ∆vL separated by the distance L that is the scale
of the whole flow. Actually vL is smaller by a factor of two or three
but it does not matter really because if Re = ∆VLL/v >> 1 for the
whole flow it follows that:

v0l0 >> 1, (2.4)

where l0 is the size of the biggest eddies and by v0 ≈ vL we rather
understand the root mean square of the fluctuating velocity typical;
for the ensemble of proto-eddies, that is

√
v2

0 .
The pro-eddies are the energy containing in the sense that they

hold the major part of the energy associated with the total fluctuating
part of the velocity, i.e., E ≈ v2

0 . Successively the smaller eddies
are characterized by successively smaller, but still large Reynolds
numbers and contain less energy,

Re >> Rei = v(i)li/v > Rei+1 >> 1, (2.5)

for each generation of eddies i. To avoid confusion it should be
stressed that the notion of eddies is not really well defined. It would
be safe to see the velocities v(i) as a characteristic fluctuating ve-
locity variance over a distance li, rather than the velocities of well
delineated vortices. In fact the latter can be seen as the definition
of eddies. Eventually the size and the corresponding eddies velocity
become small enough so that:

Red = vdld/v ≈ 1, (2.6)

So that at these scales the dissipative term in the Navier-Stokes equa-
tions becomes of the order as the nonlinear coupling. The scales of

21in Laboratory conditions the decaying turbulence is realized in turbulent flows
past a grid described in Endnote g in the end of the text.
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order of ld are called the dissipation range, while the scales from the
interval:

L ≈ l0 >> ld, (2.7)

this range is called the inertial range. For each scale li let us introduce
the time scale:

∆ti = li/v(i), (2.8)

during which the eddy is likely to decompose into smaller ones. The
characteristic time ∆t0 >> ∆ti is called (large) eddy turnover time.
During the time comparable with the eddy turnover time the proto-
eddies will decompose enough, as the result of nonlinear interactions,
so that the inertial range is formed and the dissipation range is
reached.22

It should be taken into account that in real conditions there is
always present a mean inhomogeneous flow with velocity |U(r, t)| >
∆vL. It is quite clear that for the assumption of homogeneity and
isotropy of eddies (in the statistical sense) it is necessary that the
following condition is fulfilled:

|∂kUi|−1 >> ∆t0 >> ∆ti, (2.9)

so that it is clear that the assumptions of HIT can be understood
only locally in globally inhomogeneous flow and are applicable only
to eddies from the inertial range.

Assume that turbulence in the inertial range is in a steady state.
It is a safe assumption provided that the considered time interval sat-
isfies (2.9). Then it should be from the balance of energy requirement
that the average energy flux per unit volume per sec passing through
the successive generations of eddies with velocities vi remains con-
stant. Or more correctly the ensemble averaged energy flux density
< ε >= const. Clearly the flux is in the space of scales li dimin-
ishing with the growth of generations of eddies i, or in the Fourier
space of wavenumbers ki ≈ li. In physical space there is no system-
atic ensemble averaged flux in HIT. Since the dimension of < ε > is
length2× time−3 (it is reminded that the density ρ = 1) from purely
dimensional considerations it follows:

< ε >≈ ∆v3
L/l0 ≈ v3

0/l0 = ...... = v3
(i)/li. (2.10)

22In DNS of decaying turbulence it is usually safe to wait for a few ∆t0 to
achieve this state of developed turbulence.
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Let us introduce a very useful quantity called eddy viscosity:23

veddy ≈ ∆vLl0 ≈ v0l0; vi,eddy = v(i)li. (2.11)

Then it follows:

< ε >≈ veddy(v(i)/li)
2 = v(vd/ld)

2 (2.12)

Note that the eddy viscosity is scale dependent and in general class
of flows space-time dependent. The eddy viscosity can be also intro-
duced as follows:

< ε >≈< ε(l0) >≈ −veddy < {∂kṽi(l0) + ∂iṽk(l0)}2 >≈ −2v < e2
ik >,

(2.13)
where ṽi(l0) and < ε̃(l0) > are the smoothed over the small scales
mean velocity field and dissipation rate respectively that are now
dependent on the large scale−l0 structure only and the differentiation
is done accordingly over these large scales. What the relation (2.13)
means is a simple statement that as much energy is passed over from
large scale eddies to the smaller ones caused by the stress at the large
scales will be eventually dissipated by the molecular viscosity.

Now we can find again from purely dimensional considerations the
eddy velocity as a function of their size. Since neither Re nor L can
enter by the assumptions of HIT it follows unambiguously:

v(i) =< ε >1/3 l
1/3
i , (2.14)

providing an explicit law for the distribution of velocity fluctuations
in turbulence as a function of their scale. The definition of vi (2.14)
makes the relation (2.12) an identity. The corresponding character-
istic Kolmogorov eddy number i turnover time is:

∆ti ≈ li/v(i) =< ε >−1/3 l2/3. (2.15)

A very important relation connects L and ld as follows:

L/ld ≈ (v0l0/v)3/4 ≡ Re3/4. (2.16)

23The eddy viscosity is called like this because if the eddy size and velocity li, vi
are substituted by the molecular free path and velocity λfree, vmol one obtains
the definition of molecular viscosity ν.
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The relation (2.16) furnishes self consistency to the definition of the
inertial range, through Re and this is what it should be because Re
is the only intrinsic parameter in the Navier-Stokes equation.

The Eqs. (2.14) - (2.16) constitute the essential basis of the Kol-
mogorov theory. It is amazingly simple and allows the calculation
of most quantities that are needed for practical applications (Monin
and Yaglom). Rarely in the history of science were such profound
conclusions made on the basis of so few assumptions, which seem all
quite innocuous and even obvious, and with such little mathemati-
cal complexity. The generality of the results is also puzzling, since
they are universally applicable for all turbulent flows, in pipes, at-
mosphere, geophysics, oceanography, wherever one is concerned with
flows far enough from the boundaries.24

It is practically more convenient, although not really more funda-
mental to consider the Kolmogorov theory in Fourier space. Let us
introduce the energy spectrum as follows:

E(k) = k2

∫
E(k)dΩ = (4π)k2(2π)−3(1/2)

∫
< v(0) · v(r)e−ikrdV

≡ (1/π)k2

∫
< v(0) · v(r) > (sinkr)/krr2dr, (2.17)

where dΩ is the solid angle differential. The average energy density
is now:

< E >=

∫
E(k)dk = 1/2 < v2

i (0, 0) > . (2.18)

Now one applies to the spectrum E(k) the Kolmogorov assumptions
in a slightly different manner. From the general dimensional consid-
erations it follows:

E(k) = A < ε >2/3 k−5/3φ1(Reφ2(kL). (2.19)

In the limit Re → ∞ we can expect universality and Re indepen-
dence. This fixes φ1 = 1. The postulated independence of the energy
spectrum from the large scale motions fixes φ2 = 1. So the Kol-
mogorov spectrum that will be called also the K41 spectrum in what
follows becomes:

E(k) = A < ε >2/3 k−5/3, (2.20)

24The distance from the boundaries is meant in dimesionless units defined by
Re. In physical units this can be very small for high values of Re.
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while:
k0 << k << kd = l−1

d . (2.21)

The spectrum (2.20) in Fourier space is essentially equivalent to the
law (2.14) in physical space.25 It should be noted that in the original
Kolmogorov theory < ε > was rather identified with the average rate
of energy viscous dissipation. But the average energy flux is of course
equal to the average rate of viscous dissipation.

Fundamental question, in particular for DNS of turbulence, is the
number of independent velocity harmonics, or the number of degrees
of freedom that are necessary for adequate representation of turbu-
lence. This question was answered in the classical analysis of Landau
and Lifshitz (1987) in the following manner. Let us assume that m
is the number of modes that can be densely packed into unit vol-
ume of turbulent flow. This number from dimensional considerations
can be a function of only the time independent parameters < ε >
and v. However there is only one quantity with the dimension of
length that can be constructed with these two parameters and that
is the Kolmogorov length scale ld defined by (2.16), or equivalently
as ld ≈ (< ε > /v3)−1/4. Since m has the dimension of lenght−3 it
follows that m = l−3

d ≈ (< ε > /v3)3/4. The total number of modes
in the volume L3 ≈ l3d is then:

Nmodes ≈ (L/ld)
3 = (kd/k0)3 ≈ Re9/4. (2.22)

Since the Reynolds number is typically very big the total number of
independent modes, as it follows from K41 is huge. This in particular
explains why it is so difficult to simulate turbulence and why it is so
difficult to have good meteorological models.26. Another extremely

25Kolmogorov formulated his theory in physical space of scales. Obukhov re-
formulated it in Fourier space. So in truth the spectrum should really be called
Kolmogorov - Obukhov spectrum. For brevity we shall refer to the energy spec-
trum (2.21) in he manner often accepted in literature as K41 spectrum and when
considered together with all the underlying assumptions as K41 theory.

26Because for the typical values Re in geophysical conditions no computer power
will be ever sufficient in accordance with (2.22). Hence the meteorological mod-
eling is based on assumptions as regards the high wave numbers k ≤ kd flow
properties of the flow so that to take into account of them in an averaged way as
some turbulent viscosity (see Section 3) and cut down on the number of partici-
pating velocity harmonics. The shortcoming is that with no proper understanding
of the small scale nature of turbulent flows such approximation can be way off
the reality.
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important conclusion from K41 is that entrophy is all defined by
the smallest scales of order ld. Indeed, it is easy to see from the

general definition of enstrophy Ω = ω2 that ω(i) ≈ liv(i) ≈ L
−2/3
i .

The smaller is the eddies scale the more vorticity they have. More
formally we introduce the enstrophy spectrum as:

< Λ/2 >=< ω2/2 >= k2/2

∫
Λ(k)dΩ =

= (2π)k2(2π)−3

∫
< ω(0) · ω(r) > e−ikrdV =

∫
E(k)k2dk ≈

≈< ε >2/3 k
4/3
d ≈< ε >2/3 l

−4/3
d = O(Re), (2.23)

where we used the relation (2.16). The Eq. (2.23) is absolutely
fundamental for understanding turbulence. It shows that Re as grows
so does enstrophy and this growth is entirely due to the smallest scales
or eddies in the inertial range, or the largest wavenumbers in the
inertial range. The wavenumbers in the dissipation region k > kd are
fast, ostensibly exponentially decreasing and hence do not influence
much the average enstrophy value.

On the contrary the average energy is defined almost entirely by
the largest scale eddies. Indeed it follows from (2.18) and K41 that:

< E >≈< ε >2/3 L2/3 ≈< ε >2/3 l
2/3
0 =< ε >2/3 k

−2/3
0 . (2.24)

This is a very beautiful picture that should be deeply felt for good
understanding of what happens in turbulence: energy from the en-
ergy containing large eddies flows steadily through many generations
of successively smaller eddies, increasing the enstrophy in each suc-
cessive generation of eddies while maintaining their energy negligible
by comparison with the prime eddies and eventually dissipating via
the smallest eddies through the molecular viscosity into heat. This
is called the energy cascade since it literally reminds the cascading
waterfalls. But water cascades in physical space and energy in the
space of scales or wavenumbers, remaining in the same place in phys-
ical space (unless carried away by the mean flow).

With the understanding of the principles of the Kolmogorov the-
ory it is necessary to return back and inspect with care the exact
Eq.(1.22). It must become clear now that the cascade seems the only
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way in which the Navier-Stokes equations can allow the energy dis-
sipation. It can happen only through the growth of enstrophy. And
since Re→∞, which is the same limit of course as ν →∞, the finite
rate of dissipation equal to the energy flux in the space of scales < ε >
can be only attained if enstrophy tends to infinity in the same limit.
But the growth of enstrophy is possible only through the stretching
of vortex lines by the fluid motion which in conjunction with the
erratic nature of this fluid motion inevitably generates progressively
smaller scales or progressively smaller eddies. This is the gist of the
cascade mechanism that had been first envisioned by Richardson and
brought to the final extraordinary conclusions in K41. And this was
done with almost no mathematical tools employed beyond the scaling
analysis and elementary derivations.

3 Kolmogorov Theory of Homogeneous Isotropic
Turbulence (K41): Part 2

For clear understanding it is necessary to furnish formal defini-
tions of certain basic quantities and relations that will be used in what
follows as a rule without referring to the original works. The velocity
field is assumed to be a random function, statistically homogeneous,
isotropic and stationary function. What it means is that the correla-
tion functions made of the velocity field are invariant with regard to
translations and rotations, but generally not invariant with regard to
reflection. With these assumptions the most general expression for
the second rank velocity correlation tensor is:

Bij(r, t)=<vi(r, t)vj(0, 0)>=A(r, t)δij+B(r, t)xixj/r
2+C(r, t)εijlxl.

(3.1)
The lack of mirror symmetry yields the third term in the r.h.s. of
(3.1). From the incompressibility condition (1.3) it follows that:

∂jBij = 0, (3.2)

so that:
∂A/∂r + ∂B/∂r −B/r = 0. (3.3)

Let us also assume that the velocity field is a stationary random
function. Then its Fourier transform in the space of wavenumbers
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and frequencies, (k, f) - space is a generalization of (2.1) as follows:

v(k, f) = (2π)−4

∫
v(r, t)e−ikr−ftdV dt, (3.4)

subject to the finite norm condition:

||v(k(4)||2 =

∫
|v(k(4))|2dk(4) <∞, (3.5)

and similarly in physical space. We introduced a formal a notation
k(4) = (k, f). Since v(r, t) is real it follows for the conjugate:

v(k(4))∗ = v(−k(4)). (3.6)

Using the Fourier transformation of the velocity field we introduce
the spectral tensor:

< vi(k
(4)vj(k

(4)) >= Fij(k
(4))δ(k(4) + k′(4)). (3.7)

Hence comparing with (3.1):

Fij(k
(4)) = (2π)−4

∫
Bij(r, t)drdt. (3.8)

Respecting translational and rotational invariance as in (3.1) - (3.3)
yields the most general form of the second rank tensor as follows:

Fij(k
(4)) = A(k, f)δij +B(k, f)kikj + C(k, fεijlkl, (3.9)

where the wave number k = |k| =
√
k2
i . The continuity condition

(1.3) in Fourier space yields:

kivi(k
(4)) = 0; kiFij = 0. (3.10)

Then the most general expression for the second rank spectral tensor
can be rewritten as follows:

Fij(k
(4) = E(k, f)/4πk2[δij + kikj/k

2] + iεijlklH(k, f)/8πk4. (3.11)

The scalar functions E(k, f) and H(k, f) are respectively the energy
and helicity spectra. Let us show this. Integrating the symmetric
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part Fij over the wavenumbers and frequencies and together with
(3.8) obtain for the average energy density:27

< E >= 1/2

∫
Fij(k

(4))dk(4) =

∫
E(k, f)dkdf = 1/2 < v2

i (0, 0) >,

(3.12)
where dk(4) = dkdf. The one time wave number spectrum for the
steady state turbulence:

E(k) =

∫
E(k, f)df = (2π)k2

∫
< v(0, 0) · v(r, 0) > (sinkr/kr)dr.

(3.13)
Note that for E(k) = A < ε >2/3 k−5/3 the velocity correlation
function in the inertial range is:

< v(0) · v(r) >∝< ε >2/3 L2/3(1−Acorr2/3/L2/3);

ld << r << L;Acor = const ≈ 1. (3.14)

The antisymmetric part of Fij(k
(4)) requires a bit more of inspection.

From the definition of vorticity it follows in Fourier space:

ωi(k
(4)) = iεijlklvj(k

(4)), ω(k(4) = i[k× v(k(4)]. (3.15)

Consider now the scalar product:

H(k(4) = v(k(4) · ω(−k(4)). (3.16)

Only the real part of H(k4 is non-zero. Together with the definition
(3.15) it follows for the helicity spectral density:

H(k(4)) = 2k · [Rev(k(4) × Imv(k(4))].28 (3.17)

It is useful to notice that in the same way it follows for the energy
spectral density:

E(k(4)) = 1/2{[Rev(k(4))]2 + [Imv(k(4))]2}. (3.18)

27Since the statistical description of turbulent fields is considered the total
energy is substituted by the ensemble averaged energy and the total helicity
with ensemble averaged helicity. Additionally, we are considering the statistically
homogeneous steady state flow, so that it follows < v(r, t)2 >=< v(0, 0)2 >.

28The real value Re should not be confused with the Reynolds number Re.
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Using Parcival’s theorem and averaging over the ensemble we obtain
after some identical transformations:

< h >= limV,T→∞(V T )−1H = limV,T→∞

∫
hdV dt =

limV,T→∞

∫
v · ωdV dt =

∫
< H(k(4) > dk(4) =

= (2π)−4

∫
< v(k(4) · ω(−k(4) > dk(4) =

∫
H(k, f)dkdf =

∫
H(k)dk.

(3.19)
It is not difficult to get convinced that H(k, f) is the same as in
(3.11). In other words H(k, f) is the helicity spectrum like E(k, f
is the energy spectrum. We will be interested mainly in the wave
number dependence of the helicity spectrum Hk. It can be derived
alternatively as follows.

Let us introduce the one time helicity correlation function:

h(r) =< vi(0)ωi > . (3.20)

Then it follows identically:

< h(0) >=< h > . (3.21)

Also:

H(k) = k2

∫
HkdΩ = (4π)/(2π)3

∫
h(r)e−ikrdV =

= (4π)k2/(2π)3

∫
< v(0) · omega(r) > (sinkr/kr)r2dr, (3.22)

where dΩ is the solid angle differential element. Hence the average
helicity density is:

< h >=

∫
H(k)dk ≡< vi(0)ωi(0) > . (3.23)

Let us reformulate the balance equations (1.16) and (1.24) for the
averaged quantities < E > and < h >. Since the fluxes in phys-
ical space are zero for HIT the ensemble averaging of the balance
equations yields:

∂t < E >=< viFi >= −2ν

∫
k2(E(k)dk. (3.24)
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Evidently:

− < ε >= −2ν < e2
ik >= −ν < ω2 >= −2ν

∫
k2E(k)dk = O(1),

(3.25)
where Re independent average energy flux in Fourier space of wave-
numbers < ε > is the same as the one that stands in the Kolmogorov
spectrum. Similarly instead of (1.24) it follows:

− < εh >= ∂t < h >= −2 < ω · curlω >= −2ν

∫
k2H(k)dk = O(1),

(3.26)
where < εh > is the average helicity flux in Fourier space. And at
last for the enstrophy balance Eq. (1.20):

∂t < Λ >=< ω · (ω · ∇) = ν < curlω)2 > (3.27)

where:

−ν < (curlω)2 >≡ −2ν

∫
k4E(k)dk. (3.28)

Let us consider the lim → 0 which is equivalent to the limRe →
∞. Substituting the Kolmogorov spectrum (2.20) into (3.25), while
assuming that for k > kd the spectrum E(k) falls of rapidly, e.g.,
exponentially, yields:

< ε > −ν < ε >2/3 k
4/3
d = O(1). (3.29)

The energy dissipation rate is Re independent parameter. Hence for
the viscosity and kd cut-off wave number we have respectively:

ν ≈< ε >1/3 k
−4/3
d , (3.30)

and:
kd = l−1

d ≈ ν
−3/4 < ε >1/4→∞. (3.31)

In reality the energy spectrum for k ∼ kd not the K41 spectrum for
sure. But the relations (3.28)-(3.31) can be seen as definitions of
kd = l−1

d , whatever is the energy spectrum in this k - space region.
When ν → 0 the expression (3.31) is equivalent to (2.16). Let

us note once again that it is the same to take the limit of vanishing
viscosity ν, or large integral scale L, or large integral scale velocity
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since the only important is the value of Re defined by (0.1). In other
words the limit ν → 0 should be always understood in a more general
sense as the limit Re→∞.

At the same time the rate of enstrophy generation would be
Reynolds number dependent of order 0(Re3/2). An important asso-
ciated quantity often measured in experiment is dimensionless skew-
ness parameter for the velocity derivatives that is defined as follows
for HIT model:

S = − < (curlω)2 > / < (∂vx/∂xx)2 >3/2=

= C1ν

∫
k4E(k)dk/(

∫
k2E(k)dk

3/2
, (3.32)

where C1 is Reynolds independent constant. In K41 theory skewness
should be a Reynolds number independent quantity. Estimates based
on closures usually result in S = 0.3− 0.5. However experiment and
DNS consistently show that is weakly growing with the growth of Re.

Let us notice that the balance of energy would be fulfilled if eddy
viscosity in Fourier space is introduced:

ν(k)eddy =< ε >1/3 Ckz−2. (3.33)

For a certain unique value of z:

z = 2/3;

νK41
eddy ≈< ε >1/3 k−4/3. (3.34)

The meaning of eddy viscosity is that the nonlinear term in the
Navier-Stokes equation generates the cascade like constant energy
flux in the space of wavenumbers from larger to the smaller ones. The
energy flux due to the nonlinear coupling of a given shell {k + ∆k}
with all other shells in the space of wavenumbers brings energy into
this given shell which is effectively balanced in a steady state by the
flow out of this shell. This steady state process of constant energy
flow in k-space can be interpreted as the balancing of two terms: in
source supplying energy to the shell in k-space and out dissipation of
energy away from the shell. This latter can be interpreted as a kind
of eddy viscosity acting at every scale. This is exactly the scale de-
pendent eddy viscosity introduced before in (2.11) and now in (3.34).
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And the value of the eddy viscosity exponent (3.34) is uniquely de-
fined for the energy spectrum exponent −5/3.

It is very useful sometimes to model the nonlinear transfer term in
the Navier-Stokes equations as a source and the eddy viscosity action
(3.34). To see how this can be done let us write down the Navier-
Stokes equations in Fourier space. We will need it later for many
purposes. Let us do it here using the space Fourier decomposition
only and thus leaving explicit dependence of the velocity field on
time. Substituting (2.1) into (1.8) and taking into account (1.4) after
some transformations we arrive at the widely used classical form of
the Navier-Stokes equations:

∂tvi(k, t)+1/2Pijs(k)

∫
dqvj(q, t)vs(k-q, t) = Fi(k, t)−νk2vi(k, t),

(3.35)
where F (k, t) is the Forier transform of the external forcing Fi and
the so-called projector operator:

Pijs(k) = (δij − kikj/k2)ks + (δis − kiks/k2)kj (3.36)

It is not difficult to surmise that the projector operator comes es-
sentially from the solution of (1.4) in Fourier space. From the uni-
versality hypothesis it follows that the actual nature of the force is
not really important if howver it stirs the fluid only at large scales.
Then we will choose it, although it is not a necessary choice, as a
Gaussian source injecting energy into the flow and fully defined by
its correlation function:

< Fi(k, t)Fi(k
′, t) >= Φ(k < k0, t)δ(k + k′);

Φ(k > k0, t)→ 0. (3.37)

This sort of forcing can be likened to the stirring ”paddle in a pan”
that was introduced in the previous Section 2 as one of the ways of
creating turbulence. From (3.35) and taking into account that the
source is Gaussian it is easy to derive the equation for the energy
spectrum E(k, t). Multiplying (3.35) by vi(k

′, t)/2, integrating over

the solid angle element k2dΩ(k) = k2dk/k and over dk′, ensemble
averaging and respecting the flow homogeneity and isotropy we obtain
after doing some elementary work:

∂tE(k, t) = Φ(k < k0, t) + T (k)− 2νk2E(k), (3.38)
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where:

T (k) = −k2Pijs

∫
dΩ

∫
dq < v(q)v(k-q)v(-k) >, (3.39)

Is the energy transfer term ude to the nonlinear interactions. Since
the nonlinear terms conserve energy it is generally possible to write
as follows:

T (k) = divkj(k)E = ∂kj(k)E , (3.40)

where:

j(k)E =

∫ k

0

dk′T (k′) =

= −
∫ k

0

dk′k′2Pijs(k
′)

∫
dΩ(k′)

∫
dq < v(q)v(k’-q)v(-k’) >

(3.41)
is the energy flux due to the nonlinear interaction in k - space. For
steady state turbulence we have:

Φ(k < k0, t) + T (k)− 2νk2E(k) = 0 (3.42)

and in the inertial range k >> k0 >> kd approximately with the
accuracy of terms of order O(Re−1):

T (k) ≈ 0. (3.43)

As long as we are considering the inertial range it should be then
satisfied:

j(k)E =< ε >= const. (3.44)

The energy flux constancy in the inertial range as before is actually a
postulate of the existemce of the inertial range with Re independent
relevant physical quantities.

It is especially elegant and usefull when expressed in physical
space. Let us introduce the n− th order velocity structure functions
as follows:

< ∆v(r)nl >=< [v(r+x) - v(x)]nl >, (3.45)

where the subscript l means the longitudinal projection. The longitu-
dinal structures functions are relatively easy to measure in laboratory
and for divergence free isotropic and homogeneous vector fields they
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provide significant information about the correlation tensors. In par-
ticular, the third order structure function < ∆v(r3

l > provides full
information on the general two point third order velocity correlation
function. It can be shown doing some rather tedious algebra that the
Karman-Howarth relation that is in fact the the relation (3.44) but
in physical space (e.g., Monin and Yaglom, 1975) is satisfied.

If we define the energy flux in k-space as:

< j(k)E >= 2 < ε1/3C

∫ k+∆k

k

k−4/3k
2E(k)dk, (3.46)

we can see that with logarithmic accuracy it is selfconsitently the
same for any shell {k, k + ∆k} in the inertial range. This is a basic
premise of K41 theory, which is likely to remain true and survive
in the future theory. This flux generated by the nonlinear term at
certain k = kd by continuity matches the viscous dissipation. So it
can be understood in both ways, either as production of small scale
turbulence by the larger scales or as dissipation, because eventually
it matches the viscous dissipation.29

Let us consider what happens with K41 when a flow is not mirror
symmetric. In other words when the ensemble averaged helicity is
not zero, the spectra E(k) and H(k). Since they are defined by
means of symmetric and antisymmetric part of the velocity spectral
tensor they should be independent. However there is still a weak
restriction imposed by the usual Schwartz inequality, e.g., Moffatt
(1978). Indeed, it is obvious from this inequality that:

< [v(k)
∗·ω(k)]+[v(k)·ω∗(k)]>≤ 4 < [v(k)·v∗k)]>< [(ω(k)·ω∗(k)]> .

(3.47)
Then together with the definitions of E(k), Λ(k) and H(k) we derive
making simple calculations:

|H(k)| ≤ 2kE(k). (3.48)

This seemingly innocuous inequality results in important conclusions.
Assume that turbulence is driven by a most helical external force that

29It should be noted that although the mean values are the same the fluctu-
ations of the energy flux should not bereally identical to the fluctuations of the
energy viscous dissipation rate. But usually they are assumed to follow the same
scaling laws. Nevertheless, the identification of the two is an assumption.
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can only be, for instance by a paddle that injects helicity into the flow.
If the reasoning of Kolmogorov is assumed than anyway for the high
wavenumbers the energy spectrum will be K41 irrespectively of the
driving force at large scales (that is small wavenumbers). But then
the maximal value of helicity transmitted to the high wavenumbers is
limited by the inequality (3.48), so that |H(k)| ≤ 2kE(k) ∼ k−4/3. In
fact, even this is not possible because the viscous dissipation defined
by (3.26) would be proportional to Re3/4. The dissipation then would
reduce the helicity spectrum to the steeper falling power law±H(k) ≤
E(k) ∝ k−5/3, where ± is due to the fact that the force injected
helicity can be positive or negative. In this case the helicity absolute
value dissipation rate would be the same as the energy dissipation
rate (3.26). Whatever is the rate of helicity injection into the flow
its spectrum will become universal and just the same as the energy
spectrum, even though the helicity mean value can be large at large
scales. In other words there is no substantial dynamical influence
of statistically mean helicity on turbulence dynamics at small scales.
Although the reasoning above may seem rudimentary the result is
very general. It can be obtained by more elaborate methods that
would add nothing to the substance. In practice large enough mean
helicity can delay the turbulence cascade and prevent for a period
of time the energy flux reaching the high wavenumbers. But when
it happens the dynamical influence will become insignificant. This
is why helicity by itself is not really an important quantity for the
fundamental structure of turbulence as was pointed out before (see
Endnote b in the end of the text).

Now let us introduce the formalism for a flow projected into a
finite cubic lattice with periodic boundary conditions. This is a model
closest to HIT model of turbulence in unbounded flow domain and
therefore basic for DNS and numerical experiment into turbulence.

4 Kolmogorov Theory of Homogeneous Isotropic
Turbulence (K41):
Turbulent Flows on a Lattice

Consider the velocity field inside a cube of edgelength 1/2π and
its projection onto a finite cubic lattice inside that cube, for instance,
a 3D grid with N equidistant lattice points in each direction. The
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simplest boundary conditions would be the periodic ones:

vi(x, y, z) = vi(x+ 2πm, y + 2πn, z + 2πl), (4.1)

where m,n, l are integers. Denote the coordinates of the grid points
by r(n) where n is a vector whose components ni are integers from 1
to N and:

xi = ni/2πN. (4.2)

The velocity at a point r(n) can be expanded in a triple Fourier series
as follows:

v(r(m)) =
∑
{k(n)}

v(k(n))ei(k
(n)·r(n)

, (4.3)

where k(m) is a vector with components ki = ni such that:

(k(n) · r(m)) = nimi/2πN, (4.4)

and where: ∑
{k(n)}

=

N∑
ni,nj ,nl

. (4.5)

The transformation inverse to (4.3) is:

v(k(n)) = N−3
∑
{r(n)}

r(k(n))ei(k
(n)·r(n)

, (4.6)

where: ∑
{r(n)}

=

N∑
ni,nj ,nl

. (4.7)

The shell averaged energy spectrum hence is:

Es(k(n) = 1/2
∑

k(n)
/k(n)

(v(k(n)) · v(−k(n))), (4.8)

where the summation is over all the orientations of the unit vector
k(n)/k(n). The summation in (4.8) is called shell averaging and the
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energy spectrum itself is shell averaged energy spectrum. This is as-
sociated with the energy spectrum E(k). Using the Parceval theorem
it follows:

E =
∑
{k(n)}

Es(k(n)) = 1/2N3
∑
{r(n)}

v(r(n))2, (4.9)

where the sum is over all possible lengths of k(n). In the same manner
we introduce the spectral tensor F sij(k)(k(n)) which is the analogue
of Fij(k) and, in particular, the shell averaged helicity spectrum:

Hs(k(n) =
∑

k(n)
/k(n)

(v(k(n))ω(−k(n))), (4.10)

which is the analogue of H(k) for the continuous case.
If the number of grid points N3 is big enough, or in other words

the resolution of DNS is high enough the space averaging or the shell
averaging in the Fourier space would adequately approximate the
ensemble averaging. This is not, however, invariably the case. Since
N is finite there will always be a random deviation of the space and
shell averages from the genuine ensemble averages. For instance as
a result of the statistically independent fluctuations in Es(k(n) the
mean square deviation from the shell and space averaging will be of
order O(N−1/2). Of course the real dynamics of the Navier-Stokes
equation may somewhat alter this estimate but this is not the issue
now. What is important to emphasize is that although for most
quantities the deviations would be very small they are never small
for the quantities for which the ensemble mean is zero. For instance
for the helicity and helicity spectrum the space averages never are the
same as the genuine ensemble averages, which for mirror symmetric
flow are identically zero. Although the real fluctuations of helicity
are determined by the dynamics of the Navier-Stokes equations and
mat be not statistically independent the issue is that quasi-ergodic
hypothesis should be applied with caution. In this sense it is more
reliable to consider many time realizations of forced BigBox flow.

The time realizations are either generated from many initial con-
ditions or by considering forced turbulence. The forced turbulence
means that the force F 6= 0 in Eqs. (1.1). The force can be arbi-
trary, in particular a useful and popular choice is a random force,
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but with one important constraint. It should force only certain large
scale harmonics of the flow and not affect directly the small scales so
that not to contaminate the naturally developing turbulence cascade.
The force should be in other words similar to a paddle that we used
as a way to stir the flow in a pan when the K41 model was discussed
above. The arbitrariness in the way the forcing is chosen is based on
our conviction that the ensuing turbulent flow does not depend in its
main features on how turbulence is triggered; to be sure a principle
superseding K 41 theory in generality and most probably surviving in
the asymptotic limit of Re→∞, even if the K41 theory itself is not
complete. In DNS the force will result in a flow that when averaged
over sufficient number of time realizations and the averaging over
space in each time realizations would be an adequate approximation
to the ensemble averaged flows with stable steady state features like
the energy spectrum. If there are coherent sub-domains in such a
flow they should survive this double averaging and show up unam-
biguously. This all is especially relevant because intermittency and
coherent sub-domains are located in very small parts of the fluid vol-
ume, which in discretized flow description corresponds to sets with
relatively few lattice points N3

F /N
3 << 1.

Let us calculate the ensemble mean square deviation of the shell
averaged helicity spectrum. The ensemble mean <H(k)>=<Hs, (k)>
=0, where the superscripts are omitted for simplicity. But the shell
averaged H(k)s 6= 0.30 Let us assume that the fluctuations of H(k)
are statistically independent. Then evidently we are seeking the fol-
lowing quantity:

σ2
H =< [H(k)sh]2 >=< [

∑
k/k

H(k)]2 >=
∑
k/k

∑
k′

< H(k)H(k′) > .

4.11)
Now we use the statistical independence of H(k:

< H(k)H(k′) >=< H(k)2 > δk, k′. (4.12)

We find for the variance (4.11):

σ2
H =

∑
k/k

< H(k)2 >. (4.13)

30When it is not confusing the superscripts for the wavenumbers will be omit-
ted.
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It should be noted that the zero, or in practice weak correlations as-
sumption is equivalent roughly to assuming the Gaussian distribution
for the fluctuations. It is more proper to say that a quasi-Gaussian
assumption is made, because the strictly Gaussian assumption would
lead to zero interaction between the velocity harmonics and subse-
quently no dynamics at all. Using the Eq. (3.17), which is of course
the same for the discrete description we obtain the factorized expres-
sion:

σ2
HG =

∑
k/k

4k2 < [Rev(k)2][Imv(k)2] >< sin2α(k) >, (4.14)

where we have assumed that the angles between Rev(k) and Imv(k),
actually the phases α(k), are statistically uncoupled from the abso-
lute magnitudes of these vectors, an assumption subsequent to the
assumption of statistical independence of H(k) fluctuations. Also it
is obvious that:

< Rev(k)2 >=< Imv(k)2 >= 1/2 < E(k) > . (4.15)

Hence we obtain:

σ2
HG = 2k2

∑
k/k

< E(k)2 >, (4.16)

where the additional subscript G means Gaussian assumption. Fi-
nally assuming that statistically there is rotational isotropy making
possible replacing the summation

∑
k/k by 4πk2, one obtains for the

helicity spectrum variance:

σ2
HG = 1/2π[(E(k)2]. (4.17)

This is a fairly remarkable result in that it is independent of the
resolution N . It shows that in any realization of turbulence the shell
averaged spectrum fluctuates primarily within the following interval:

−Es(k)/
√

2π ≤ H(k)sh ≤ +Es(k)/
√

2π. (4.18)

In the next section it will be explained that the assumption of statis-
tical independence of H(k) that is roughly equivalent to the assump-
tion of statistical independence of the phases α(k, t) is inconsistent
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with the dynamics of the Navier-Stokes equations and obstructs the
energy cascade to small scales. It should be pointed out that even
though K41 theory is not complete but the general concept of the
energy transfer to and dissipation at small scales is undoubtedly a
correct vision of turbulence. Thus it should be always in our mind
for testing the validity of assumptions. If an assumption contradicts
this basic tenet than it is definitely wrong. Since the assumption of
statistically independent helicity harmonics fluctuations are not com-
patible with the unimpeded flow of energy from large scales to the
small ones than this assumption is wrong. If it is wrong it means
that the helicity harmonics H(k) are coherent. This means in fact
that α(k) phases are coherent. It is this phase coherence that results
immediately in intermittency in physical space. It is a very general
property of phase coherence of fields in Fourier space that it trans-
forms and shows as a certain bunching effect for the large amplitudes
of this field in physical space, i.e., in general sense intermittency.
Thus the result that we must anticipate is that the helicity fluctua-
tions are connected with turbulence intermittency and with no such
intermittency the unimpeded energy flow to high wavenumbers is not
possible. It is obvious without repeating that all the formulas of the
previous sections are correct for the discrete description with integrals
and volumes substituted by the sums and number of lattice points.
The natural condition for a good resolution of DNS is as follows:

N3 >> Nmodes, (4.19)

where Nmodes is defined by (2.22). This condition shows what enor-
mous computational power would be required for faithful DNS of tur-
bulent flows for large values of the Reynolds number. This illustrates
the desperate need of geophysical community to have model equations
instead of the real Navier-Stokes equations that would eliminate most
of the degrees of freedom but at the same time do not ”throw a child
out of the basin together with water”, speaking figuratively. Such
models may be possible but in the first place there must be if a not
an analytical theory, such as we were used to in other physical disci-
plines of the past, then at least a good qualitative comprehension of
what turbulence really is.

In what follows the discrete and continuous description will be
used wherever convenient without further comments and considered
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equivalent. Nevertheless, it should be emphasized that there is a prin-
cipal and not only practical significance in the relations (2.22) and
(4.20). What they tell us is that despite the fact that the fluid flow
as described by the partial differential Navier-Stokes equations is a
space and time continuous problem with generally infinite number of
degrees of freedom turbulence is always a problem with finite number
of degrees of freedom proportional to the finite phase volume k3

d that
only asymptotically tends to infinity together with the unbounded
growth of the Reynolds number. In this there is clear similarity with
other nonlinear systems with finite degrees of freedom and compli-
cated chaotic dynamics and herewith lies hope that may be much
smaller phase space and much smaller number of degrees of freedom
would be sufficient to describe turbulence faithfully.

5 Kolmogorov Theory of Homogeneous Isotropic
Turbulence (K41): What is Correct and What
is Wrong

In fact the discussion was started in the previous Section 4. But
let us go back to the historical roots that should help better under-
standing of the facts that have been gradually established since K41
theory release. It was soon noticed that the reasoning leading to the
K41 spectrum is not unique. Indeed, from dimensional considera-
tions one can use < ε >2/3 for the derivation of the spectral function
(2.20). But equally it can be local ε(r, t) and not the averaged < ε >
used from dimensional considerations. But ε(r, t) is itself a fluctuat-
ing field. What it means is that dimensionally we could use for the
spectrum definition, say < εn >2/3n, where n is arbitrary.31 There
are no physical or mathematical reasons to choose n = 1. If ε was
similar to a normal statistical type quantity fluctuating as a Gaus-
sian variable this would be not a significant change affecting only a
constant in front of the spectrum. However it was early noticed by
Batchelor and Townsend (1949) that this is not the case. In fact is
quite a wildly fluctuating quantity that reminds nothing of the usual
field fluctuations in near to equilibrium statistical systems. In Fig.
7 borrowed from Kit, et al., (1987) one can see typical experimental

31This reasoning is usually attributed to L. Landau and can be found in B.
Mandelbrot (1983).
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time traces of various quantities measured at a location in turbulent
flow past a grid-a velocity component denoted as ui(t) , a vorticity
component ωi , a part of the helicity density ui(t)ωi(t), energy density
dissipation ε(t), enstrophy ω2(t) and other more nonlinear quantities
relevant for turbulent dynamics. Inspecting the time traces immedi-
ately shows that for instance the velocity component varies in time in
what appears a relatively smooth Gaussian like manner. But the en-
ergy dissipation and enstrophy time traces are totally different. They
consist of quiescent long signals with quite rare distinct large ampli-
tude peaks at approximately the same locations on the time axis for
the two fields. Even more distinct peaks are evident for other quanti-
ties depicted in the Fig. 4 that are cubic nonlinearities with respect
to the velocity field derivatives.

It is clear that dependent on n the averages < εn >2/3n would be
completely different and in consequence the energy spectrum may be
different. Since there is no reason to choose one n or another for the
derivation of the energy spectrum the whole sequence of considera-
tions that led to K41 theory crumbles.

The velocity fluctuations in turbulent flows are primarily deter-
mined by large scale or low wavenumbers velocity harmonics as is
seen from Eq. (2.24). In contrast the fluctuations of the velocity
derivatives in general and the enstrophy, its rate of growth and en-
ergy dissipation rate < ε(t) are all strongly skewed to small scales
or high wavenumbers values, see for instance Eqs. (2.23), (3.28) and
(3.29). Note that the last property would remain the same if the en-
ergy spectrum is not K41 but another power law close enough to K41.
The moments of the energy dissipation rate < εn >2/3n are definitely
anomalous by comparison with what is regarded as normal in statis-
tical analysis that is the moments as they should have been if their
fluctuations followed the normal Gaussian (bell curve) distribution.
In fact for big enough they are defined primarily by the rare peaks
of intensity in the time traces and this dominance increases with the
growth of n. But at the same time this anomalous growth can be
only due to the high wave numbers harmonics of ε(t). Together it
means that the high wave numbers harmonics of the energy dissipa-
tion ε(t) are located in the time trace amplitude peaks or equivalently
in narrow bands of physical space flow volume.32 The same is true

32The identification of spatial patches and temporal peaks requires adoption of
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for all other velocity derivatives related quantities such as enstrophy,
enstrophy generation, etc., as can be clearly seen in Fig. 7 below.

So far it was the usual description of intermittency familiar to
everyone stuyding turbulence and chaos in dynamical systems. But
the reality is that these intermittent patches of activity are built
of coherent helical cells with near to maximal helicity and besides
forming obvious clusters of organized vortical activity. The coherent
objects that I named BCC above. The recognition of BCC indicates
a totally new reality of understanding intermittency in turbulence.

Let us try to develop this understanding step by step. To start
with after years of experimental study it is rather safe to believe that
itself fluctuates in accordance with a scaling power law as follows,
e.g., Monin and Yaglom (1975):

< (ε(0)− < ε >)2 >=< ε > (L/r)µε , (5.1)

where L is the integral scale and the experimental value of parameter
µε are not really precise, but probably in the interval 0.3 < µε <
0.5. In particular for r = ld one obtains from (5.1) the mean square
deviation of ε(t) that is actually measured in experiments:

< (ε(0)− < ε >)2 >=< ε > (L/ld)
µε =< ε > Re3µε/4, (5.2)

Other quantities often measured in the laboratories are the so-called
structure functions of longitudinal velocity projections.33 These are
defined as follows:

< ∆v(r)nl >=< [v(r)− v(0)]nl >∝< ε >n/3 (r/L)n/3−µν(n), (5.3)

where the subscript l means longitudinal projection. The meaning
of the relation (5.3) is like this. If K41 is correct in its original form
then µε = 0. This is because the original K41 theory ignores the
anomalously large fluctuations of small scale velocity variance and the
related quantities, such as space and time derivatives of v(r, t) and
their powers. In other words the original K41 ignores intermittency.
This would mean that < v(r)nl >=< ε >n/3 rn/3. But experiment

a rudimentary ergodicity hypothesis.
33Only the longitudinal projections of the velocity variations parallel to the hot

wire are usually measured in experiment. The only exceptions that I am aware
are the experimental works sited above (see also Endnote g).
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Figure 7: Laboratory measurements of time series of various turbu-
lent quantities in turbulence past the grid from Kit, et al., (1987).
From top to bottom they are one velocity component u1, one vor-
ticity component ω1, u1ω1, energy dissipation, rate , enstrophy ω2,
part of the vorticity stretching term, sij = 2eij , see Eq. (1.18), etc.
We chose these particular measurements because they were done in
a unique set of experiments in turbulent electrolyte. This allowed
direct measurements of the quantities in a manner different to the
usual hot wire anemometer measurements in turbulence that neces-
sitate further application of various assumptions in order to arrive
at the quantities of physical interest. It can be clearly seen that the
fluctuations of velocity are mild, near to Gaussian, vorticity is much
more intermittent with distinct peaks separated by long stretches of
mild fluctuations, which is seen even better from observing fluctua-
tions of enstrophy. The higher is the power of velocity derivatives the
more obvious are the rare peaks of intensity separated by quiescent
periods and this is the characteristics of intermittency. The higher
are the orders of moments the more dominant will be the contribution
of the rare peaks of intensity of the respective quantities.

firmly shows that although µν(n) ≈ 0 for n = 2 with experimental
accuracy, which is equivalent to the Kolmogorov law (2.14), µnu(n) 6=
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0 and is nonlinear at least for 2 < n ≤ 6.34 Intermittency thus
conforms with generalized scaling.

This latter is a relaxed version of the K41 theory that stated that
the properties of turbulence in the inertial range should be indepen-
dent of both the Reynolds number, in the limit of Re → ∞ and the
integral scale L. If the first and more profound scaling assumption
is still in place but the second is relaxed there is freedom now to
use the L parameter for the scaling power laws of the type of (5.1)
and (5.3). In other words the velocity structure functions become
more and more singular for small separation scales r → 0, i.e., or
in general sense for high wavenumbers. This is in accord with the
vision that the intense part of turbulence connected with turbulent
field velocity variations and derivatives is concentrated in progres-
sively smaller and smaller sub-domains in the fluid volume.35 Thus
it seems that although the original K41 theory is not really correct
nevertheless the generalized scaling concept and universality of tur-
bulence, at least HIT, are confirmed experimentally with reasonable
experimental evidence.

The above led to great efforts of building phenomenological mod-
els that would put together K41 theory and intermittency. The gen-
eralized scaling theories inevitably lead to fractal and multifractal
models of turbulence (Mandelbrot1977, 1982, 1983). Let us consider
for methodological purposes the simplest of them due to Novikov and
Stewart (1964), which is known in literature as fractally homogeneous
turbulence-FHT. While doing this we will introduce some important
definitions that will be used for the exposition of a dynamical theory
later in this paper.

Consider a box of size L that is split into sub-boxes of size l1.
If we measure the energy flux ε(r, t) , or better to say observe it
with low resolution vision, for instance our sight is clouded by tears
and we see no fine details we may conclude that the dissipation is

34Genrally n is not integer. The value of n = 6 is approximate and seems not
universal. The behaviour of µν(n) for high n may be linear but this is likely due
to the fact that high order moments are spurious and do not have much physical
meaning if at all as discussed below.

35Note that µ in (5.1) generally does not coincide with any of µν(n) from (5.3),
unless additional assumptions are made. The intermittency exponents for the
correlation functions in Fourier space are difficult to relate to those in physical
space because the corresponding physical space Fourier transforms are not local.
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homogeneously distributed everywhere in the whole box of the size
L. More precisely we would see the averaged over the cube and time
value of the flux V −1T−1

∫
ε(r, t)dV dt, where V is the full size cube

volume and T = T (V ) is the corresponding time scale. But when we
improve our resolution, wipe mist from our eyes, we would see that
in fact the dissipation occurs, may be also homogeneously, but only
in n < m of the sub-boxes of size l1. In other words we would observe
now the flux averaged over only a part of the space/time in a fraction
n/m = (l/L)µ < 1 sub-boxes. If we magnify our resolution further,
put on the glasses, we would see that in reality the dissipation occurs
in even a smaller fraction of size l2 such that the ratio λ = l2/l1 =
l1/L = const. The fractally homogeneous set is built by self-similar
iterations of this process. Taking account of the constancy of the
total energy flux through the space sub-boxes with increasingly finer
resolution the following relation follows:

ε(L) = ε(l1)n/m = ε(l2)(n/m)2 = ....... = ε(li)(n/m)li , (5.4)

or:
εi = εi−1λ

−µ = ε0(l1/L)−µ. (5.5)

The effective volume through which the energy flux is passing (and
eventually becomes equal to the viscous rate of energy dissipation at
the scales of order ld) is determined in a similar way with the result:

Vi = L3(n/m)i = L3(l1/L)µ(l2/l1)µ......(li/li−1)µ = L3(l1/L)µ.
(5.6)

Now it is easy to calculate the moments of the energy flux:

< (ε(0)− < ε >)(ε(r)− < ε >)n >=< ε >n (L/l1)(n−1)µ; r ≈ 1.
(5.7)

In particular for n = 2 setting l1 = ld we obtain the scaling rela-
tion (5.2). We built a simplest possible fractal model with the ”vol-

ume” tending to zero with l1/L → ld/L → 0 as Re−3µ/4 → 0, while

the volume of the active sub-domain tends to zero as L3Re3µ/4, the
area of the surface bounding this sub-domain will tend to infinity
as L2Re3µ/4. The actual dimension of the sub-domain is a fractal
DF = D − µ with D = 3 in this case.

Let us consider the above a bit differently in a way convenient
for the further exposition in the sections below. Let us associate a
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material volume with an active sub-domain embedded in 3D flow do-
main. Let us make an infinitesimal scale transformation r′ = e−lr,
where we choose l → 0 and positive. By definition of a fractal set
of dimension DF = D − µ embedded in 3D space, the material vol-
ume of a small sub-domain under this scale transformation becomes
∆DF r = e−(D−µ)l∆Dr. If the fractal is isotropic it means that the
effective contraction under the scale transformation is the same in
x, y, z directions, i.e., r → e−µl/3r′ = re−(D−µ)l/3. Let us iterate
the rescaling m → ∞ times. Since m is arbitrary let us choose it
in such a way that limm→∞,l→0e

−ml = ln(r/ld). Then asymptot-
ically the iteration of infinitesimal scaling transformation results in
the following:

∆Dr→ ∆DF r = ∆D−µrlµd , (5.8)

while
r→ r(D−µ)/3l

µ/3
d .

But it can be that the fractal is strongly anisotropic. In the extreme
case the scaling will look like this:m

∆Dr→ ∆DF r = ∆r(D−µ)lµd ,

(x, y)→ (x, y)′, z → z(D−µ)lµd . (5.9)

Let us associate a physical field with the material volume, for instance
the energy flux. Since the latter is conserved under the scaling trans-
formation (5.8) we obviously arrive at (5.7). But what happens with
the velocity field v(r, t) and other fields that are not conserved un-
der the scale transformation (5.8) or (5.9)? In the FHT it is easy to
calculate. One of the few exact consequences of the Navier-Stokes
equations is a fairly remarkable relation of Karman-Howarth-Dryden
for the velocity structure function of order n = 3 (see also (2.10)).
If statistical homogeneity and isotropy are assumed then it can be
derived for the separation distances r from the inertial range and in
the limit Re→∞ (e.g., Monin and Yaglom, 1975):

< ∆v3 >= 4/5 < ε > r. (5.10)

Since the cascade remains homogeneous at each cascade subdivision
in (5.4) it is natural to suppose that the same relation is preserved
at each scale. Then it is easy to derive that the exponents in (5.3)
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are linear and all determined by one exponent µ defining the square
fluctuations of ε(r, ):

µν(n) = µ(n− 3)/3, (5.11)

implying corrections to the second order structure function at n = 2
and subsequently the K41 spectrum. FHT is the simplest fractal
model of turbulence that can only be by the criteria of our times.
More complicated phenomenological so-called lognormal model was
built by Kolmogorov and Obukhov. In the lognormal model (e.g.,
Monin and Yaglom, 1975) the intermittency parameter µ(n) is non-
linear. Realization that the lognormal model of turbulence is a par-
ticular case of more general class of multifractal models of turbu-
lence came much later (e.g., Parisi, Frisch, 1985). For quantitative
and deep analysis one should go to Mandelbrot monograph and the
works of many authors cited therein. For the purposes of this paper
the most relevant analysis of multifractals, their conceptual founda-
tions and relevance for turbulence, geophysics and meteorology have
been developed in the seminal works of Lovejoy, Schertzer and their
co-authors whom I cite often in this paper (e.g., Lovejoy, 1982; Love-
joy and Schertzer, 1985; Lovejoy, et., al., 2007; Lovejoy, et., al., 2008;
Lilley, et., al., 2008; Schertzer and Lovejoy, 1983, Schertzer and Love-
joy, 1985a; Schertzer and Lovejoy, 1985b, etc.). Most of their works
can be conveniently found on the website of GANG-Group for the
Analysis of Nonlinear Variability in Geophysics.

It seems beyond reasonable doubt that based on the analysis of
extensive geophysical data, airborne, satellite, radar and recently li-
dar that all the atmospheric turbulent fields of importance, turbulent
wind in horizontal and vertical, rainfall, admixtures distribution in at-
mosphere, etc., have universal scaling multifractal organization. The
more extreme are the deviations of these fields from the mean the
smaller is the dimensional support for these extremals. This scaling
organization extends from the smallest scale of millimeters to appar-
ently the largest planetary scales spanning ten orders of magnitude,
a truly remarkable conclusion contradicting all the previous geophys-
ical concepts. At the same time it seems that there is no end to the
extreme deviations of turbulent fields from their mean values. Most
probably the Pdf for the extreme fluctuations is a power law; to be
sure asymptotically in the limit of Re → ∞. What it means is that
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that the high order statistical moments of the fluctuating turbulent
fields are divergent and actually do not have physical meaning in
this limit. Since experiment is always done for finite values of the
measurements would show finite values for all orders of statistical
moments. But these finite values are spurious and do not have sense
beyond the fact that the moments are dominated by a few extreme
deviations from the mean. This is good news for practitioners of
turbulence. Because if multifractal structure with all meaningful mo-
ments of the velocity field and its derivatives is correct then generally
turbulence must be characterized by an infinity of scaling exponents
for different physical fields and their different order moments. This
would render the whole concept quite useless and would forever make
turbulence intractable to any reasonable scientific analysis. In fact
the realization that only a finite number of moments of physical fields
in turbulent flows have meaning makes it possible trying to determine
their dynamical significance and building a dynamical theory.

In the framework of helical structures concept the statistical de-
scription of turbulence is limited and it seems clear that high order
statistics should be meaningless. Indeed, what is the meaning of
the statistical moments if the main contribution to these moments
comes from BCC, an immensely coherent and asymptotically fractal
object? So far the singularities of high order moments of turbulent
fields have not been seen in laboratory experiments, e.g., Sreenivasan
and Antonia (1991), but this does not at all eliminate the concept’s
validity since the Reynolds numbers of laboratory measurements, the
precise ones, are incomparably lower than in geophysical flows. On
the other hand it is increasingly indicative from DNS that reaching
the real scaling is a slow asymptotic process requiring high values
of Re. Also, the local in space nature of laboratory measurements
are not conducive for capturing the extreme fluctuations that may
occupy a very small physical sub-domain in space/time.n

Let us come back to the role of helicity. The HIT and statisti-
cal mirror symmetry are assumed below, meaning that < h >=<
H(k) >= 0. Let us consider the relation for the variance (4.11). By
definition it follows:

∂/∂t
∑
k

σ2
H ≡ ∂/∂t < [

∑
k

H(k)][
∑
k′

H(k’)] > . (5.12)

304 Concepts of Physics, Vol. VI, No. 3 (2009)



Coherence in turbulence: new perspective

But each of the sums in Eq. (5.12) is just the total helicity, not to
be confused with the ensemble averaged helicity, which is assumed
to be zero, and therefore conserved by the nonlinear term in the
Navier-Stokes equations. Then of course I =

∑
k I(k) =

∑
k σ

2
H is

also conserved by the nonlinear term, e.g., Levich (1987). Therefore
we obtain for the I - invariant, setting here F = 0 in (1.1):

∂I∂t = −2ν
∑

kk2I(k). (5.13)

Assume now that the helicity fluctuations are not or weakly corre-
lated. Then for I(k) = σ2

H we can use the factorized expression (4.17)
with the result:

∂I∂t = −2ν|sumkk
2I(k) ∼ −ν

∑
kk2E(k)2 ∼

∼ −ν
∑

kk−4/3 = O(−k−4/3
d k

−1/3
d ) = O(k

−5/3
d ), (5.14)

where we used the K41 E(k) ∝ k−5/3 and (3.30) for ν. When ν → 0
or kd → ∞, which is the same as Re → ∞, the rate of dissipation
of I - invariant tends to zero. On the other hand the I - invariant
in the Gaussian approximation is predominantly determined by the
large scale helicity fluctuations. Indeed, using (4.17):

I =
∑
k

I(k) ≡ 1/N3
∑
r

< h(r)h(0) >=
∑
k

I(k) ∝ L7/3. (5.15)

In other words the large scale helicity fluctuations do not dissipate.
But it is at these scales that most of energy resides. Then clearly the
cascade of energy to small scales is put on brakes and can be shown
stopped.36

What was demonstrated above is that the assumption of uncor-
related helicity fluctuations at high wavenumbers, an innocuous as-
sumption it would seem at the first glance, results in contradiction
with the reality true for all turbulent flows-the free energy cascade

36Or it is necessary to have the inverse cascade of I to large scales that will pull
away most away most energy from the cascade to small scales. For reference I
would like to mention that similar reasoning can be applied to MHD turbulence,
but with substitution of helicity by cross helicity, A =

∫
v ·BdV , (Levich and

Shtilman, 1982).
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to small scales and subsequent viscous dissipation. The conclusion
is that the assumption is wrong and should be expunged. Note that
the exact form of the energy power law spectrum is not important for
this conclusion and small scaling corrections to K41, in the unlikely
case of their existence, would not change the conclusion.

The assumption that should be made instead is that on the con-
trary the small scale H(k) harmonics are strongly correlated in such
a way that the rate of viscous dissipation of I - invariant is the same
as the rate of energy dissipation. For this to happen it is necessary
to assume as follows:

I(k) ∝ I(k)G(L/k)µH ∝ E(k), (5.16)

where if the K41 spectrum is assumed the intermittency exponent
µH = 5/3.37 This choice of the intermittency exponent would make
the rate helicity fluctuations rate of dissipation (5.14) and the en-
ergy rate of dissipation (3.25) of the same order O(1), i.e., finite and
the Reynolds number independent. But this intermittency exponent
µH = 5/3 is large and indicates very strong α(k) phase coherence
(see the definition (3.17) and the considerations leading to (4.14)).
The phase coherence means bunching of the corresponding field in
physical space or intermittency. And what is the corresponding field
in physical space? The Fourier inverse of H(k) can be written as
follows:

φ(r) = N−3
∑
r′

v(r′) · ω(r-r’) ≡ N−3
∑
∆r

v(r + ∆r/2) · ω(r−∆r/2),

(5.17)
where a convenient redefinition of variables was made: r′ → r+∆r/2.
The high wavenumbers coherence of H(k) fluctuations is necessarily
a bunching, or wave packets of φ() in physical space with high ampli-
tudes in small sub-domains containing high wavenumber harmonics
of H(k). As the wavenumber k → ∞ the sizes of the sub-domains

37Note however that since only near to dissipation and dissipation range scales
are important for the integral rate of dissipation the assumption that in this range
the energy spectrum is K41 is not justified. Thus the value of intermittency
exponent is illustrative rather than a prediction. In fact, there are grounds to
believe that in near to dissipation range the energy spectrum is flatter than K41,
as was asserted in Levich (1987) and now seems to be compatible with DNS of
Mininni et al., (2008b)

306 Concepts of Physics, Vol. VI, No. 3 (2009)



Coherence in turbulence: new perspective

of φ()r will tend to zero as ∆r ∼ k−1. But it is obvious from the
definition of phi(r) that the high amplitudes means strongly corre-
lated v and ω inside the sub-domains. The phase correlations are all
important. Indeed the variation of velocity occurs on a time scale
commensurate with the large scale motion, since velocity is domi-
nated by the large scale harmonics. But vorticity is dominated by
the small scale harmonics of order k ≤ kd. Thus they vary on a small
time scale generally unless constrained by the coherence as they are
in strongly helical flows. The correlations in both Fourier and phys-
ical space are totally determined by the correlations of phases, i.e.,
in this case the angles α(r, t) between velocity and vorticity and the
angles α(k, t) between Rev(k, t) and Imv(k, t).

It is convenient to interpret φ(r) as a topological ”charge” in a
sub-domain averaged over its volume ∼ ∆r3. The maximal possible
charge for given amplitudes |v| and |ω| would be given if there is a
Beltrami flow inside this sub-domain. And the bunching of Beltrami
like topological charges is in relation with anomalously large values
of the correlation function:

γ =< φ(r)φ(r + ∆r) >, (5.18)

by comparison with what would be their quasi-Gaussian values, for
small separation lengths ∆ from the inertial range. If scaling is as-
sumed this would mean that statistically for many realizations the
sizes of the sub-domains can be any from the inertial range.38 Since
the mean helicity is zero the volume averaged helicity should be at
least small for any volume much bigger than the size of the sub-
domains. But since the sub-domains are of any size from the inertial
range it means that each of the Beltrami sub-domains should have
nearby (statistically) an equivalent anti-Beltrami sub-domain with
the opposite helicity sign. This is the reason why these topological
charges should cluster together rather than be distributed unconnect-
edly. Alternatively they may have a short life time, virtual in a sense,
so that not to result in violation of mean helicity conservation law. It

38It is useful to get used to the asymptotic manner of perceiving the inertial
range. It is always correct to think that the wavenumbers tend to infinity in this
range because of the inertial range definition (2.21) with L finite and Re → ∞.
This asymptotic manner of thinking is of course general for all the phenomena
described by scalling laws

Concepts of Physics, Vol. VI, No. 3 (2009) 307



Eugene Levich

should be noticed that on a qualitative level we arrived at the BCC
concept.

It may be rather strange at the first glance to the ones used to
the K41 theory because the above reasoning was all based in order to
salvage the principles of universality, scaling and energy flow to high
wavenumbers which is usually associated with K41. But the conclu-
sion is that turbulence coherence is not in contradiction with these
general principles but on the contrary the necessary condition for
them to be true. Neither the coherence is in conflict with K41 energy
spectrum, but on the contrary the K41 energy spectrum is totally im-
possible in the incoherent turbulent scenario. This is a point not easy
to accept by some of us since our education was that the spectrum is
derived from the incoherent vision of turbulence and many years of
work by many were dedicated to find ways to rescue this spectrum
despite the obvious experimental intermittency and coherence. And
yet the BCC scenario is not only compatible with the K41 energy
spectrum but as will be shown later is most probably the mechanism
of generation of this energy spectrum rather than the purely homoge-
neous cascade phenomenology of K41 theory; that is to say that one
should distinguish between the K41 spectrum, which seems correct
and the particular mechanism of its formation from the K41 theory,
which is highly unlikely to be true. Nevertheless, the principles of
scaling and universality are much more general then any particular
dynamical mechanism and it is rather they select the required avail-
able dynamical mechanism compatible with these principles. In this
case this mechanism is the formation of BCC.39

39The suggestion that K41 spectrum is formed by vortex sheets in turbulent
flows, the remains of surfaces of tangential discontinuities typical for inviscid de-
scription, rather than the result of homogeneous energy cascade was made a long
time ago by Townsend (1949). But then when the spectrum is restored it turns
out that the spectrum would be ∼ k−2, which is definitely wrong experimentally.
However the development of this concept popular among Cambridge school of
turbulence was that the sheets are unstable as a result of Kelvin - Helmholtz
instability and fold multiplicatively, the phenomenon called curdling after Man-
delbrot, and thei may create in principle any power law energy spectrum (see:
Moffat, 1983). In this general context BCC can be seen as an extension of the
vision of turbulence by Townsend and Cambridge school. But the intrinsic co-
herence and universality of BCC are new concepts. By the way, in 1D analogue
of the Navier - Stokes equations called the Burgers equation with a stochastic
forcing in the r.h.s., the shock wave like singularities indeed form the spectrum
∼ k−2. But in 1/D case there is no curdling and there is no intrinsic dynamical
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Practically it is nearly impossible to observe experimentally in
laboratories the helical fluctuations with conventional measurements.
Physical experiment in turbulence, it is reminded, is done by hot wire
measurements, as a rule, and fundamentally local, at best at several
space points. Nevertheless, visualization of CS in many natural flows
and especially in geophysical flows leaves no doubt of their ubiqui-
tous presence everywhere in turbulence, as was suggested in Tsinober
and Levich (1983) and Levich and Tzvetkov (1984, 1985).40 Unam-
biguously however it can be done by visualization in DNS with high
enough resolution as was done by Mininni, at.al. (2008a and 2008b),
or considering the Pdf(cosθ) between v and ω as was described pre-
viously. But the last one is not easy to interpret correctly as I spent
time explaining before. The way to see the effects indirectly other-
wise is in Fourier space by calculating I(k) in DNS and comparing
with their values that would be if it was assumed that the velocity
harmonics fluctuate in the quasi-Gaussian manner. This was done in
Levich and Shtilman (1988) and Levich, et al., (1991) and shown in
Fig. 8 below. The model that was considered was the usual forced
BigBox turbulence with a randomly fluctuating Gaussian force F and
the Fourier spectrum fast decaying to zero away from the lowest val-
ues of the wavenumbers. This latter is always necessary so that the
energy injection is only at the low values of wavenumbers |k| or the
largest scales. This allows the uncontaminated energy cascade to
lower scales and the ensuing ”steady state” turbulence. Importantly
the mean helicity injected by this force when averaged over a span
of time was zero. Even though the DNS of those years were for rela-
tively low Reynolds number flows the plot in Fig. 8 is quite clear: for
the low values of wavenumbers dominated by the external forcing the
I(k) spectrum is almost the same as its quasi-Gaussian value would
have been, but for the high wavenumbers where the flow properties
can be expected, if one is based on the principles of universality, to
attain independence of the forcing, the I(k) spectrum shows very
large amplitudes by comparison with their Gaussian values, as was

chaos. The solution for the spectrum is obtained analytically.
40While staying humble in front of the complexity and beauty of turbulence

phenomenon it nevertheless should be pointed out that the pervasive helical man-
ifestations become much clearer to an observer if he/she is conscniously expecting
them. If not one may be watching the same CS and the same clouds in the sky
without perceiving or may be not attaching importance to their helical build up.
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predicted by the theoretical analysis. The physical space correlations
were not calculated because the physical space correlation functions
require much finer space resolution due to intermittency: large am-
plitudes are confined to relatively small domains and projected onto
a small number of grid points on a lattice in DNS.

Let us consider now the case of decaying turbulence. In this case
turbulence starts from some initial flow as was explained before and
this initial flow is allowed to evolve. The energy is very fast trans-
ferred to the high wavenumbers and turbulence ensues. Usually in
DNS it happens after one large eddy turnover time ∼ ε1/3L2/3 during
which the integral scale eddy with the velocity ε1/3L1/3 passes its own
length L, or faster (e.g., (2.8)). Usually the initial flow is chosen as a
random Gaussian with velocity harmonics excited principally at some
large scales or small wavenumbers. The initial state may be chosen as
zero helicity at each point for convenience, i.e.,v(t = 0) ·ω(t = 0) ≡ 0.
Or it may be any other initial condition as far as the initial helicity
is concerned, e.g., H(k) = 0 for all values of k The ensuing Navier-
Stokes dynamics however is almost entirely independent from the
helicity properties of the initial flow. Consider Fig. 9 in which the
helicity spectrum Hs(k) from (4.10) is shown for the developed stage
of decaying turbulence.

The spectrum is compared with the analogous shell averaged en-
ergy spectrum (4.8). We observe two things. The first one is quite
trivial that despite the fact the initial helicity was zero the shell av-
eraged Hs(k) is not. But it was explained above, see the inequality
(4.18), that viscosity can and generally generates helicity fluctua-
tions. If such fluctuations were random than they would have had
amplitudes defined by the inequality (4.18). But they are not ran-
dom. And this is the second observation that is not trivial at all.
How do we see that the fluctuations are not random? Because in
the region of high wavenumbers the H(k) harmonics are obviously
such that the shell averaged over all directions of k sum up having
the same sign of Hs(k) for almost all |k| = k and furthermore for all
practical purposes:

±Hs(k) ≈ Es(k). (5.19)

This is instead of randomly fluctuating between positive and negative
values for each particular k in the interval |Hs(k)| ≤ 1/

√
2πE(k), as

would have been the case if the helicity harmonics were not finely
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Figure 8: Shows the forced sready state turbulence DNS spectrum
of helicity fluctuations defined by Eq. (5.15). The solid line corre-
sponds to the Gaussian helicity fluctuations with no phase coherence
defined by Eq. (4.16) and the crosses correspond to the real dynamics
from the Navier-Stokes equations. The intermittency, in this case the
deviation from the Gaussian spectrum in high wavenumber range is
enormous.

correlated. We observe the same sort of phase coherence as the one
that resulted in anomalous helicity spectrum variance I(k). But now
the coherence is observed on the level of one turbulent realization.
It should be noted that we consider only representative realizations
with the number of grid points N big enough, (128×128×128) in this
particular DNS. It means that the deviations of the energy spectrum
from the mean for instance are very small of order O(N−1/2). In this
sense one can make a conclusion that what is qualitatively correct
for one representative realization should be true for the ensemble
of realizations as well. And the fact that in each (representative)
realization the helicity related phases α(k, t) defined in relation (3.17)
are coherent in precisely such a way that makes it possible to satisfy
(5.16) for the ensemble of realizations.

Such conclusion was effectively made before in Section 3 but with
traditional and wrong emphasis. The second conclusion is that it is
the intrinsic helicity fluctuations that are all important and not the
ensemble averaged helicity which can be zero or small. The fluctua-
tions are the essence of intermittency and eventually BCC of which
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Figure 9: Helicity spectrum in DNS of decaying Big Box turbulence
with crosses and circles corresponding to negative and positive val-
ues of Hs(k). The circles cluster and clearly prevail over the rare
crosses in the high wavenumbers range. This is imperative to have
helicity dissipated by viscous term with the same rate as energy is
dissipated. This is clear phase coherence. The total helicity is de-
termined by the low wavenumbers. But it is small and not really
relevant for the dynamics. It should be reminded that the helicity
itself and helicity fluctuations are spontaneous and created by the
intrinsic dynamics by viscous force in the Navier-Stokes equations.
There is no helicity in the initial velocity field. And if there is than
the helicity spectrum would be exactly the same as with the zero
initial helicity. The average helicity is largely irrelevant for the tur-
bulence dynamics. Although there is no simple relations between the
shell averaged helicity spectrum phase coherence, the same sign of
helicity at high wavenumbers, and helicity fluctuations in physical
space, but the two are of course related. If the helicity associated
phases are numerically randomized the helicity structures in physical
space would partially lose their coherence.

the K41 spectrum is a particular consequence. This assertion was
also made before in this Section, but now we arrived at it in a slightly
different manner.

In Fig. 10 the plot of total helicity time trace is shown for the
case of forced steady state turbulence as was discussed previously. It
is peculiar in that from time to time after a few large eddy turnover
times the helicity sign abruptly changes. The corresponding spectra
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Figure 10: Shows the total H, solid line and dH/dt, dash line, as
functions of time normalized by eddy turnover time. They change
sign typically at the same time and this signifies phase coherence not
only between the phases from the same shell in k-space but between
the phases in the high wavenumbers range and the low wavenumbers
range. This is because helicity is primarily determined by the high
wavenumbers harmonics but its time derivative, the flux, by the low
wavenumbers harmonics.

which are not shown here of course change their sign as well while
retaining the above phase coherence. ±Hs(k) ≈ Es(k) in the high
wavenumbers range holds in all realizations (representative) and the
sign for all high wavenumbers changes one can say almost quasi-
periodically and typically simultaneously for all wavenumbers at the
same instant of time.41

41Some of the past criticism of helical concept, as some authors formulated it,
was that the observed helicity is ”‘small”. This smallness or largeness of helicity
is difficult to quantify and therefore leads to confusion. Indeed, the helicity
amplitudes generated by the Navier-Stokes dynamics are small when compared
with the mathematically possible as defined by the inequality (3.48). But it is
associated phase coherence that is important. Since both in physical space and in
conjugate space the helicity fluctuations are of opposite sign this greatly reduces
the amplitudes of partially averaged quantities and makes them nearly zero when
ensemble averaged. Only the variance of fluctuations in Fourier space remain
large. But in physical space the subsequent corollary are BCC with velocity and
vorticity almost aligned in the constituent cells.
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If to think about it the fine tuning of the helicity related phases
dynamics is quite impressive. In order for energy to dissipate it should
cascade to high wavenumbers where the viscous forces can convert it
to heat by molecular friction. But this cascade is not possible unless
in Fourier space the helicity phases are not finely tuned in such an
extraordinary precise order, so that not to impede with the global
balance of energy dissipation. At the same time in physical space
BCC are formed. Note that in representative turbulence realizations
the helical structures in BCC though of opposite sign and screening
each other still do not totally cancel entirely so that some residual
helicity remains. It will become zero in theoretically ideal mirror
symmetric situation but only when the ensemble average is done over
many realizations and prpobably very slowly. This is the reason
behind the assertions of spontaneous break of mirror symmetry that
was to some extent observed in experiment cited previously (e.g.,
Kholmyansky et al.,2001).

6 Prandtl - Karman Theory of Wall Bounded Tur-
bulence

In real environment turbulence always bounded by walls or free
surfaces like an interface between two fluid media, e.g., air and ocean.
We shall recapitulate the conceptual aspects of semi-empirical theory
of wall bounded turbulence pioneered by Prandtl and Karman. This
theory has been the mainstay of theoretical and engineering treat-
ment of BL turbulent flows for nearly a century although as much as
in HIT model the full theory of wall bounded turbulence or even its
qualitative understanding remain far from completion.

In all turbulent flows the velocity field can be seen as a sum of
systematic mean velocity obtained by statistical averaging over time
and additional fluctuating velocity component that has the order of
magnitude for a scale l equal to changing the mean velocity that
occurs for a displacement of order l. It is this fluctuating component
of the velocity field flow for which the previous theory was devoted.
And as the principle of universality states this turbulence at small
enough scales does not depend on the mean flow properties. But only
the eddies having the scales quite smaller than the distance from the
walls l(y) << y will be likely not affected by boundary effects.
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First of all let us introduce for reference the Reynolds equation
that is a mainstay of theoretical and engineering treatment of wall
bounded flows. The description of wall bounded flows start from
the Reynolds decomposition of the velocity field on the mean and
fluctuating parts:

V(r, t) = U(y) + v(r, t),

U(y) =< V(r, t) >,

< v(r, t) >= 0, (6.1)

v(r, t) = {u = vx; v = vy;w = vz}

P = P0 + P ′,

P0 =< P > .

If (6.1) is substituted into the Navier-Stokes equations (1.1) and per-
form the averaging operation we obtain the Reynolds equation for
the mean flow U(y):

∂tUi + ∂k(UiUk) = −∂iP0 + ∂k(ν∂kUi− < vivk >). (6.2)

The basic term in these equations is the Reynolds stress tensor τik =
− < vivk > that formally adds to the molecular stress. In (6.2) it
is written in a way that emphasizes its usual interpretation as trans-
port due to turbulent ”diffusion” implying that part of the mean
flow energy is given away to the fluctuating motion and it is this
one that is responsible for material transfer and subsequent viscous
dissipation by the mechanisms described previously. On the whole
the mean flow energy is lost to turbulent motion and ultimately dis-
sipated by molecular viscosity. The Reynolds equations are of course
not closed because while the Navier-Stokes equations and the conti-
nuity equations are four equations for three velocity components and
pressure the Reynolds equations now have a new unknown quantity,
the Reynolds stress. The fifth equation for the Reynolds stress can
be derived like it was done for the mean velocity in (6.2) but it will
depend now on the third order correlator < vivjvk >, a new unknown
quantity and so forth. Eventually we shall encounter a situation when
an equation for the N − order velocity correlation function depends
on the N + 1− order velocity correlation function. Such system can
be closed by truncation at a certain order and the consequences will
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be discussed in the next section. It should be just mentioned that in
wall bounded turbulence closures of any kind result in an especially
dire failure of the subsequent theory to account for coherence and CS
and hence are totally inadequate as far as the fundamental theory is
concerned.

Let us simplify now the Reynolds equation by choosing a chan-
nel flow as a model for consideration. Turbulent flow in a flat infinite
channel with the walls separated by distance 2∆ is by far the simplest
example of flows both in laminar and turbulent regimes. In a laminar
regime the channel flow (and similar pipe flow) are given by the well
known exact Poiseuille solution of the Navier-Stoked equations. For
certain values of the Reynolds number the solution becomes unsta-
ble and turbulence ensues.42 The well developed turbulent channel
flow then despite its deceiving simplicity, nevertheless, on a level of
principles show almost all basic features and richness of wall bounded
turbulence.

For infinite channel flow Cartesian coordinates r = (x, y, z) are
chosen in such a way that (x, z) are parallel to the walls, with x
in the streamwise direction, z in spanwise direction and y normal
to the walls. We consider a steady flow with the mean velocity
U(y) = U(2∆−y) that is time independent and from symmetry con-
siderations a function only of the distance from the walls y. Steady
state flow is sustained by a constant pressure gradient along the chan-
nel length. The Reynolds equations for the channel flows become
quite simplified and look as follows:

∂y < uv >= −∂xP + ν∂2
yU,

∂2
yv

2 = −∂yP. (6.3)

The second equation yields P+ < v2 >= P0(x), the pressure at
the walls. Also, ∂2

xv
2 = 0, so that ∂xP = ∂xP0. Therefore we can

integrate once the first equation (6.3) over y yielding:

< uv >= −∂xP0(y −∆) + ν∂yU, (6.4)

42Despite the fact that the laminar flow solutions are the same for a flat channel
and pipe the instability of the two flows are two very distinct problems. If the
instability of the Poiseuille channel flows is rather simple problem, on the contrary
for the pipe flows the problem is much more difficult.
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where < uv > is the Reynolds stress. It should be noted that due
to the channel symmetry < uv > at the centerline ∆. The equation
(6.4) look simple but it is a deceiving simplicity. Because we still know
nothing about the Reynolds stress. Nevertheless, the symmetries of
the channel flow allow making some deep conclusions concerning its
properties (e.g., Townsend, 1980).

Briefly we develop the reasoning as follows. The pressure gradient
term ∂xP0 = τ0 is a friction force that is the same as the stress acting
on the channel walls. Let us rewrite (6.4) as follows:

τ = − < uv > +ν∂yU = τ0(1− y/∆). (6.5)

What (6.5) says is that the total stress is a sum of the viscous stress
and the Reynolds stress. There are three constants in the flow: τ0,∆
and ν. The characteristic Reynolds number is defined as:

Reτ = τ1/2∆/ν. (6.6)

This definition of the Reynolds number often very convenient for tur-
bulence near the wall and used often together with the conventional
definition

Re = Ucenter∆/ν, (6.7)

where Ucenter is the mean velocity at the channel centerline. It is
assumed that everywhere in the flow < uv >≤ 0, meaning that the
mean averaged flow of energy and momentum is from the mean flow
to the fluctuating velocity component, than certain deductions can
be made concerning the mean flow U(y). Primarily it relates for com-
parison between the profile of U(y) and the corresponding laminar
flow profile, Poiseuille velocity U(y)Lam for the same value of Reτ , if
it assumed that such laminar flow would exist and not destabilize in
favor of turbulent flow. Without going into details we reiterate the
well known classical conclusion that the turbulent profile is flatter
than the laminar, so that:

∂yU ≤ ∂yULam. (6.8)

The obvious consequence is that for the same friction force at the
walls τ0, the total turbulent flow flux, or we can call it the channel flow
throughput, is less than the corresponding laminar flow throughput.
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In other words for the same throughput the friction at the walls for
a turbulent flow is higher than for the laminar. This effect is easy
to understand. The fluctuating velocity turbulent eddies invade the
mean flow in all directions and in particular towards the wall. This
effectively decelerates the mean flow. At the wall the velocity is zero
due to the no-slip boundary condition (1.5) and this means that the
friction and in consequence dissipation are the largest at the walls
proximity. Nearer to the wall the faster is the dissipation of eddies
energy due to the molecular viscosity. Thus there are systematic
momentum flux and corresponding energy flux in the direction of
the wall. Turbulence is essentially a loss of energy in wall bounded
flows due to the turbulence induced additional, by comparison with
the laminar flows, wall friction. For large Reτ the energy losses are
huge. Decreasing turbulent friction at the walls is the main task for
turbulence engineering. And the hope always has been that better
understanding of turbulence would help turbulence management.

Since from symmetry the Reynolds stress should be zero at the
channel center line, i.e.,τ(∆) = 0, and at the walls τ(0) = τ(2∆) = 0,
it follows that somewhere in the flow there is a location ymax at
which τ(ymax) = τmax. This rather obvious conclusion will be useful
for what follows in Section 10. It is clear that for some distances from
the wall y < δ the viscous stress:

| − ν∂yU(y ≤ δ)| ≥ | < uv >y≤δ |. (6.9)

This defines the wall viscous sublayer of thickness y ≤ δ, which in
physical space for wall bounded turbulence is what the viscous sub-
range l ≤ ld = k−1

0 is in the space of scales in HIT turbulence.
Naturally the flow in the viscous sublayer is not at all laminar, as
it is not in the viscous subrange in HIT turbulence. The turbulent
eddies penetrate in the viscous sublayer and there are damped by the
nearness to the wall at which the flow freezes because of the no-slip
boundary condition (1.5).

Outside of the viscous sublayer y >> δ the Reynolds stress is
large by comparison with the viscous one:

| < uv >y>>δ | >> |ν∂yU(y >> δ)|. (6.10)

It is reasonable to assume that there is a region sufficiently away
from the wall where the mean flow is independent of ν. In this region
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it is assumed that the mean flow is universal.43 It means that we
can write for the velocity profile, in a way similarly to (2.19), the
following general scaling relation:

U = U0 + v ∗ φ1(y/∆; Reτ ), (6.11)

where the velocities U0 and v∗ are two empirical parameters charac-
terizing the flow. In the limit Reτ → ∞ the empirical function φ1

degenerates, so that φ1(y/∆; Reτ ) → φ(y/∆). The same reasoning
leads us to conclusion that in the universal region:

τ =< uv >= φ12(y/∆), (6.12)

where φ12 is another empirical function. As far as the constants U0

and v∗ are concerned we choose U0 arbitrary but define:

v∗ = τ1/2. (6.13)

The meaning of (6.13) can be deduced from the following considera-
tion. Let us assume that there is a region in the channel which is, on
the one hand, close to the wall although outside the viscous sublayer
so that it is, on the other hand, inside the region of well developed
turbulence. Because of the second condition the total stress is de-
termined by the Reynolds stress but, because of the first condition,
continuity requires that τ ≈ τ0 = constant. Therefore from very
general considerations it follows that there exists a region of constant
(approximately) momentum flux to the wall. Actually this is clear
from Eq. (6.5) for ∆ << y. The velocity v∗ is the characteristic
fluctuating velocity at the boundary with viscous sublayer y ≈ δ
with Reτ , and is called friction velocity for association with the wall
friction.

What can be deduced about the function φ1 in the limit Reτ →∞
and sufficiently far away from the walls? Let us introduce the eddy
viscosity similar to the one in HIT model given by (2.11) but describ-
ing the energy dissipation as the result of the momentum flux to the
walls. It is qualitatively clear that as the walls are approached the
eddies sizes decrease and in this sense this can be seen as a cascade

43The universality hypothesis is very simiular to the K41 assumptions of uni-
versality in HIT model. But in fact it was first made by Prandtl in 1925.
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of energy from larger to smaller eddies, but in physical space. In gen-
eral we can conveniently imagine that if in the case of homogeneous
turbulence the energy flux and dissipation take place in 3D space of
wavenumbers and in inhomogeneous turbulence these take place in
(3 + 3)D space of wavenumbers and coordinates. In conjunction the
flux in the generalized configurational space is the energy-momentum
flux {ε(r, τr)}. In the degenerate case of channel flow it becomes the
flux of two quantities, {ε(y), τ ≈ constant}.

We write like in (2.12) but substituting the distance from the
wall y instead of the size of the eddies l0. Because the largest eddies
cannot exceed in size the distance from the wall.44 Evidently from
the meaning of eddy viscosity and with reference to (2.13):

< ε > (y) >≈ v(y)eddy(∂yU)2 = v(y)eddy(dU/dy)2. (6.14)

Indeed, νeddydU/dy stands here exactly as the stress as a result of
which energy is passed over to a smaller distance from the wall and
in this sense dissipated to the smaller scale eddies. This energy is
also dissipates through cascading to the respective dissipation scales
at every y (dissipation scales now themselves depend on y). At the
same time from the K41 and (2.11) it follows that for the largest
eddies of order l0 :

νeddy ≈ v0l0 =< ε(y) >1/3 y4/3, (6.15)

since now l0 = l0(y) ≈ y. Comparing we obtain:

νeddy ≈ y2dU/dy. (6.16)

Let us calculate now < ε > from different and independent consid-
erations. Consider the general expression for the momentum flux
(1.17) and apply for the channel flow geometry, using the Reynolds
decomposition (6.1) and averaging over time. We have evidently:

< jEk >= − < vk(1/2v2
i + P )− 2νVieik >= jEy =

= − < {(P0 + P ′) + (v + U)2/2}vy >=

44This presumes in the spirit of K41 theory that the eddies are isotropic. In
reality they are not even in BigBox turbulence with ergodic boundary conditions.
And definitely not in the presence of the mean flow. But apparently the averaging
and scaling laws generality prevail over the anisotropy often, but not at all always.
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=< {P ′ + (u+ U)2 + v2 + w2/2}v >= −U < uv > − < P ′v > +

−(u2v + v3 + w2v)/2. (6.17)

Empirically U >> {u, v, w}, so that the last term in brackets can be
neglected. Also P ′ ≈ v3. So that finally with good accuracy:

jEy = −U < uv >= Uτ. (6.18)

In the region where the Reynolds stress τ ≈ τ0 = constant we obtain
the classical expression:

jEy = Uτ0. (6.19)

The energy flux should diminishes as the wall is approached because
the energy dissipates at every distance from the wall. It is useful to
have a picture in mind that at every y there is also the Kolmogorov
cascade in the space of scales, in x, z plane, with subsequent viscous
dissipation. The difference is that the scales have become functions of
y and this y dependence is responsible and tantamount to the energy
and momentum flux in the wall direction.

Evidently the dissipation rate as a measure of change of the energy
flux as one approaches the wall with progressively smaller eddies is
as follows:

< ε(y) >= ∂yj
E
y = − < uv > dU/dy. (6.20)

Note that it is assumed:

< uv > dU/dy >> U(y)d < uv > /dy. (6.21)

This condition actually defines the required approximate constancy of
the Reynolds stress. Together the relations (6.20), (6.16) and (6.14)
yield:

dU/dy = τ
1/2
0 /κy, (6.22)

where the empirical von Karman constant κ was introduced. It is
clear that all the previous considerations were losing constant fac-
tors, for instance and probably most importantly a constant in front
of the K41 expression (6.15) and κ means to absorb for the losses.
Integrating we obtain for the mean velocity profile the most impor-
tant expression, except the K41 spectrum standing in the same tier
of values, in the history of turbulence research:

U(y) = τ
1/2
0 /κ(lny + C), (6.23)
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where C is an unknown constant to be determined semi-empirically.
This can be done as follows. Consider the viscous sublayer. The
mean flow velocity there is dominated by viscous stress at the walls
and therefore one writes:

τ0 = νdU(y ≤ δ)/dy, (6.24)

so that:
U(y ≤ δ) ≈ τ0y/ν = v∗y/δ. (6.25)

At y ∼ δ it should be that the mean velocity matches the friction
velocity, i.e. U(δ) ≈ v∗. Then the only way to satisfy this matching
of the velocities would be to choose C from the condition:

U(δ) = τ
1/2
0 /κ(lnδ + C) ≈ v∗ = τ

1/2
0 . (6.26)

Experimentally κ ≈ 0.4. Eventually we get the following law:

U(y)/v∗ = U+(y) = 2.5(lny/0.13δ) = (2.5lny+ + 5.1), (6.27)

where y+ = y/δ = y/(ν/v∗) is the distance from the wall in wall units
measured by the thickness of the viscous sublayer. In these units the
Reynolds number (6.6) becomes as follows:

Reτ = τ
1/2
0 ∆/ν = v∗∆/nu = ∆/δ. (6.28)

The law for the energy dissipation, or at the same for turbulence
production (6.20) becomes as follows:

< ε(y) >≈ τ1/2
) /y. (6.29)

It shows that the closer to the wall the more intensive is the energy
dissipation due to viscous forces. This cannot continue into the region
in close proximity with the wall of course. But close to the viscous
sublayer, actually in the buffer zone the conditions that led to the
law of the wall (6.27) fail. It was established experimentally that the
dissipation and therefore turbulence production reach maximum at
a fixed distance from the wall y+ ≈ 13 that seems independent of
the Reynolds number. It seems established that the most intensive
turbulence activity takes place well inside the so-called buffer zone
that connects the regions with the universal logarithmic profile and

322 Concepts of Physics, Vol. VI, No. 3 (2009)



Coherence in turbulence: new perspective

the viscous sublayer. The similarity between (6.29) in physical space
and (3.46) in conjugate space in HIT is obvious. But again let us
emphasize that while in HIT it was the constancy of the energy flux
in Fourier space that was the basic assumption, in wall bounded flows
it is the momentum flux constancy in physical space that is playing
similar role.

The law of the wall (6.27) is shown in Figs. 11 from DNS is typ-
ical for all DNS of turbulent channel flow with moderate Reτ = 125
and good resolution.45 It is also confirmed in hundreds of labora-
tory measurements. Although for very high Reynolds number flows
the values of the empirical constants may somewhat differ from the
ones for moderate Reynolds number flows. Nevertheless, the general
self similarity principles clearly and obviously work in this case. The
above derivation is one of many that lead to the same logarithmic law.
The one that was chosen here is to emphasize that there is definite
relation and affinity between the self similarity in HIT and self sim-
ilarity in a wall bounded turbulence. If there was no K41 spectrum
there would be no logarithmic law (6.27). From general consider-
ations it was mentioned before that the Reynolds stress must pass
through the maximum at a certain distance from the wall. Let us
find its location. Using Eq. (6.5) and differentiating over y we obtain
(Sirovich, et.al., 1991):

νd2U/dy2|y=ymax = τ0/∆, (6.30)

or in dimensionless units:

Reτd
2U/dy+2|y+max = 1. (6.31)

In the universal range therefore we obtain the following asymptotic
expression for the position of the maximum of the Reynolds stress:

y+
max ≈

√
Reτ/κ. (6.32)

This is an interesting expression that tells us that even though the
universal range and the logarithmic law of the wall seem to require

45The DNS of turbulent channel flows are usually carried out with no-slip
boundary conditions at the walls at y = 0 and y = 2∆, periodic boundary condi-
tions in x, z. The velocity field is represented as the usual Fourier decomposition
in x, z and as expansion in Chebyshev polynomials in y − direction.
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that the momentum flux is constant, but nevertheless this is not the
case and the momentum flux reaches a maximum and declines with
the further approach to the wall and this is while the wall of the wall
remain intact. In fact only the condition (6.21) should be true and
this is always the case in the logarithmic profile range. Note that
although in the wall units the position of y+

max seems to get farther
from the walls with the growth of Reτ in physical space this position
approaches the wall as ymax ∝ Re− τ−1/2.

In Fig. 11 one can see three distinct regions in the flow. Away
from the wall, at about y+ > 30 the fit with logarithmic profile, with
constants close enough to the ones in (6.27), is relatively good but
it could be also approximated by a power law function with a small
exponent. Near to the wall y+ < 5 the profile is (6.25) and in the
range approximately defined as 5 < y+ < 30 and that is the buffer
zone where the profile cannot be determined by the above reasoning.
It is natural to think that this is the region where the nonlinear
coupling and in consequence the Reynolds stress are of the same
order as the viscous stress and therefore both are important. The
Reynolds numbers are too low in these DNS runs to make definitive
conclusions on the exact mean velocity profile or on the boundary
between the buffer zone and the universal range.

There are no theoretical arguments in the above theory for de-
termining the profile in the buffer zone or the distance from the wall
where it merges the logarithmic profile and this data should be in-
ferred from measurements. It should be noted however that despite
the undeniable beauty of the above semi-empirical theory there are
many aspects that are what they are-empirical. For instance the
length of the buffer zone is usually considered as cast in stone, in
the sense that the value y+ = 30 at which it allegedly merges with
the logarithmic profile region is quoted as universal and Reτ inde-
pendent. However some authors give other numbers and assert that,
ostensibly for high Reynolds numbers flows, the boundary between
the buffer zone and logarithmic law is at y+ = 60 and even farther
at y+ = 70 from the wall (e.g., Hinze 1975; Schlichting, 1968). In
other words a weak dependence from the Reynolds number cannot
be ruled out. For comparison we show an example of experimentally
obtained mean profile in Fig. 12. It is clear that up to y+ ≈ 50 the
agreement with logarithmic law is poor.
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The logarithmic law of the wall is of great importance for engi-
neering turbulence since it allows making universal predictions for the
flows with arbitrary high Reynolds numbers, for which the direct mea-
surements are problematic since the relevant physical distances from
the wall become increasingly small for very high Reynolds numbers,
if the empirical constants are firmly established from the measure-
ments at moderate Reynolds numbers. The most basic engineering
parameter for wall bounded turbulence is the friction coefficient that
defines energy losses due to turbulence. It is reminded that the most
intensive dissipation occurs in the shallow layer near to the walls
where the conversion of the mean flow energy into turbulence and
the subsequent dissipation reaches the maximum, even though the
flux of energy to the walls is furnished from the whole bulk flow. But
it is the slowing down of the bulk flow that is the measure of the to-
tal energy losses near to wall. This is quite similar to what happens
in HIT turbulence. The energy is primarily dissipated by the small
scale eddies of order ld but the energy that lost is brought by the
energy flux furnished by the large scale motion that determines the
total energy of the flow.

It was mentioned before and is quite obvious that the losses due to
turbulence are much higher than in the laminar flow, if they could ex-
ist for the same Reynolds numbers. The fluctuating eddies emerging
from the mean flow and then randomly penetrating it in all directions
are the obstacles serving to decelerate the flow. This is briefly how it
happens more quantitatively. Let us consider the mean flow velocity
at the channel center assuming that approximately it still follows the
law (6.27). We have in physical units:

Ucenter = v∗/κln∆v∗/v, (6.33)

where the centerline velocity Ucenter is actually the throughput of
the channel, i.e., the fluid volume flowing per unit time through the
cross section of the channel divided by the area of the cross section.
This flow is supported by the constant pressure gradient along the
channel length d < P > /dx = constant + A. This pressure drop
acts to compensate the walls friction per unit area that is equal to
τ0 = v∗2. Therefore d < P > /dx = v∗2/∆. Hence we obtain the
relation:

Ucenter = (κ)−1(∆A)1/2ln∆/ν(∆A), (6.34)
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that connects the throughput with the pressure drop. Introducing
the dimensionless friction coefficient:

Cf = 2∆A/U2
center, (6.35)

it is easy to derive the following classical parametric equation for it
(e.g., Landau and Lifshitz, 1979):

1/
√
Cf = 0.88lnRe

√
Cf − 0.85, (6.36)

where the constant factors are in correspondence with the ones in the
logarithmic law of the wall (6.27). For comparison the friction coeffi-
cient for the laminar Poiseuille flow is Cf,lam = 12/Re. Although it is

not immediately seen from the comparison of Cf and Cf, lam but in

fact the latter falls down for high Reynolds numbers much faster than
the former. In some approximation the turbulent friction coefficient
can be shown to have the asymptotic Cf ∝ Re−1/2 in a wide range

of large Re.46 On a big industrial scale the turbulent drag means in
practice huge energy losses in any and every system involving fluid
flows.

Is it possible to reduce the turbulent drag? Enormous work has
been done towards this goal and remarkable empirical successes were
achieved in the past that are evidenced by the modern flying machines
and the ships. But without clear understanding of the fundamentals
of turbulence beyond phenomenological theories the systematic tur-
bulent management remains an elusive goal.

Note that since the friction is determined by two factors, the
viscous ”skin” friction and turbulent Reynolds stress and in the above
approximations we convinced ourselves that the letter is much larger
in most of the flow it appears that the only way to reduce turbulent
drag is to reduce the turbulent stress < uv > and the question is
how.

Despite the beauty of the above theory real wall bounded turbu-
lence is much more complicated and the knowledge of mean velocity
profile and drag coefficient are not enough.

46While the friction coefficient tends to zero the total energy lost of course
grows with the growth of Re and for turbulent flows much faster than for the
laminar ones by virtue of much larger Cf.
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Figure 11: Shows the mean velocity profile in a turbulent channel
flow from DNS by Sirovich, et. al. (1991). The Reynolds numbers
are: Reτ = 125 and Re ≈ 1800. The profile looks qualitatively
similar to the ones measured in laboratory experiments. There is
confidence in certain features, such as the logarithmic profile, at least
asymptotically for large Reτ , sufficiently far away from the walls, the
presence of the buffer zone and viscous sublayer.

If turbulence is a quasi-Gaussian phenomenon as is implied in K41
theory and in Prandtl - Karman theory for wall bounded flows then
generally this is not possible, except some particular situations that
have been primarily empirically discovered during the long history of
trials and errors in turbulent research. Moreover these situations are
clearly out of scope of Prandtl - Karman theory.

The main reason for further research, except scientific curiosity,
is the ever present desire to control turbulent drag. Usually it is
necessary to diminish drag, but sometimes we want to increase it.
The reason for the latter is that in many applications it is beneficial
to increase the transport of admixtures to the walls and heat transfer
from the walls. The increase of turbulent mixing and transport is
usually linked with the increase of drag.

The conjecture that is made here is that the near to wall turbu-
lent region is the location of intensive BCC, as much as the high
wave number region is such in HIT. This conjecture for wall bounded
flows was made in Levich (1996), although the helical nature of wall
bounded turbulence and geophysical structures was asserted earlier
in Tsinober and Levich (1983), Levich, Tsinober 1984 and Levich
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Figure 12: From Rajaee, et.al. (1994). Plots experimental mean ve-
locity profile obtained in a channel flow with the Re = Ucenter∆/ν ≈
10.000. The deviation from logarithmic profile is clear till y+ < 50.
Cf is the friction coefficient (6.35).

Figure 13: Shows the typical time (in wall units) trace from DNS by
Sirovich, et.al. (1991) of the Reynolds stress −uv > 0 in the quadrant
u < 0 and v > 0. The time is normalized by the eddy turnover time
and the acute intermittence of the signal, intense peaks separated by
the quiescent intervals, is evident (compare with Fig. 7). The time
relates to typical turnover time expressed in universal wall units.
The peaks of activity are usually attributed to so-called bursting and
sweeping events (see Section 10 below).
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Tzvetkov (1984, 1985). Unfortunately no analysis similar to that of
Mininni, et.al. (2008a, 2008b) for HIT has been accomplished for tur-
bulence near to wall, even in the simplest case like turbulent channel
flow. This issue will be further addressed below in Section 10.

In Fig. 13 the time trace is shown (Sirovich, et.al., 1991) of the
stress u(t)v(t) for a location near to the wall in the buffer zone. The
time trace was generated by DNS with the same parameters as for
the one in Fig. 11. It is sampled out for simplicity in such a way
that the stress is negative everywhere. It can be clearly seen that
the time trace is strongly intermittent with strong peaks of intensity
separated by rather long periods of relative quiescence. As much as
intermittency is typical for the high wavenumbers harmonics of HIT
turbulence so it is in the proximity to the wall in wall bounded flows.
It was discovered in the last 50 years of observations that near to wall
flow region is full of relatively long lived and having definite shape
correlated vorticity sub-domains called coherent structures (CS). As
was explained in Foreword CS have been so far described purely on a
level of visualization, as sub-domains of seemingly correlated vortic-
ity. It is my personal belief that these CS are similar to the intense
vorticity bands in Fig. 2 for HIT. But a variety of such structures
in near to wall region that are observed and talked about appears
very rich compared to HIT where researchers are reluctant at times
to admit coherence at all. These are pin vortices, rolls, streaks, horse
shoe vortices, etc. Unfortunately no much sense has been made till
now with all this multitude of vorticity shapes, little is understood of
their origin and the role they play. However it is absolutely clear to
everyone that they are dynamically important and in fact are turbu-
lence. The Prandtl - Karman theory is as incomplete as K41 theory
by not accounting the coherent manifestations and in principle not
being capable of addressing them.

7 Dynamical Theory 1: Perturbation Theory and
RNG Analysis in Asymptotic Limit of Low Wave
Numbers and Frequencies

There were numerous attempts to find analytical approach to K41
theory from the first principles, i.e., from the Navier-Stokes equa-
tions. All the approaches were based on perturbation theories in one
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way or another and closures; the perturbation theories methods were
primarily borrowed from certain successful applications to non-linear
quantum field theories and closures from unsuccessful applications in
statistical mechanics of strongly interacting gases. The emphasis was
on the K41 spectrum, because for intermittency and coherent struc-
tures except for phenomenological models no theoretical approach
was ever invented. Besides the way many were thinking of turbu-
lence remained linear in the sense that intermittency and CS were
seen as corrections laid over the basically healthy K41 theory. Still
other authors noted that the energy spectrum is just one of the basic
quantities describing turbulence. It does not carry useful informa-
tion on extreme deviations of turbulent fields from the mean and
does not contain any information on CS. Nevertheless, one should
start from something and the researchers focused on the K41 spec-
trum as the only quantitative result at the time and it took good
40-50 years before the attempts to devise yet another different per-
turbation theory from the Navier-Stokes equations finally came to
end. Nevertheless, the K41 spectrum itself remains a foundation for
the models of turbulence in which the high wavenumber properties
of turbulence are treated in an averaged manner as eddy viscosity for
the low wavenumbers turbulence.47

Even though the closures and perturbation theories when directly
applied fail to reveal the real structure of turbulence important con-
clusions can be drawn from the details of how and why they fail.
Furthermore as will be shown in the next section a particular pertur-
bation theory that is applied together with certain specific assump-
tions on the structure of turbulence reveals important quantitative

47The turbulence models are many and differ from each other by particular ways
of formulating the eddy viscosity. They are of course all empirical and contain
phenomenological constants that are fit to satisfy the experimental data. The
role of extreme deviations from the mean at high wavenumbers is not discussed
and such deviations play no role in these models. It is surprising that in many
situations and applications the models do work well despite the fact that they
are all based on wrong physics. So that one may think that the ”linear” thinking
may be correct and intermittency though plays obviously the role for high order
statistics does not influence the large scales of turbulence and this sense can be
disregarded. This is a simplistic position because in many other applications and
most importantly in geophysics the models don’t work at all. Why and where
the models do or don’t work is a very important question. It will be in a limited
way discussed in what follows.
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properties of this structure, e.g., the fractal dimension of the sub-
domain occupied by BCC.

All these schemes whatever name they carried with them were a
perturbation theory in one way or another. And since the only in-
trinsic parameter in the Navier-Stokes equations is Re it would serve
as the perturbation theory expansion parameter. And since it is large
the problem was how to obtain converging series from expansion in
powers of a large parameter. In reality of course all the perturbation
theories were based on the assumption of K41 scaling and contained
certain basic assumptions that despite the elaborate mathematical
equilibristics and complexity made the perturbation theories results
trivial. However certainly a few things were understood that have
had lasting importance for understanding the structure of turbu-
lence, even though the complete theories and methods themselves
were doomed to oblivion.

Let us start again from formulating the general scaling invariance
rules for the Navier-Stokes equations (1.1):

r→ λr,

t→ λzt,

v→ λ1−zv,

F→ λ1−2zF, (7.1)

ν → λ2−zν.

It can be shown that the exponent z = 2/3 corresponds to all K41
theory predictions if the external forcing F is chosen as a scaling
function with the exponent:

[F] = 1− 2z = −1/3, (7.2)

where the symbolic square brackets will from now on mean the scal-
ing exponent of a variable inside them, unless specifically indicated
otherwise. Note that the fact that an equation is scale invariant with
a particular choice of sources, i.e., the forcing in the Navier-Stokes
equation, does not mean that there is a real stable scaling solution.
Or it can unstable, or there may be a family of solutions and the sys-
tem flows from one unstable solution to another, which most probably
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happens with the turbulent flow field. On the other hand the velocity
correlation functions can attain stable scaling form compatible with
the general set of scaling transformations. Since we are concerned
with the velocity correlation functions rather than the velocity field
itself it is natural to choose the source as a random force also de-
fined through the correlation functions. And since the universality is
always assumed it is possible to choose it to be a Gaussian random
force that we define in Fourier space as follows:

< Fi(k, f)Fj(k
′, f) >= (δij − kikj/k2)Φ(k, f)δ(k + k′)δ(f + f′), (7.3)

where the forcing Fourier transform Fi(k, f) is defined regularly and:
Since Fi is Gaussian it is fully determined by the correlation function
and since the forcing is Gaussian all higher order correlation functions
are factorized as products of Φ, i.e., essentially:

< Fn >∝< Φ >n/2, (7.4)

where the unneeded at this point tensor subscripts were omitted for
simplicity. The basic condition for the external source should be as
follows:

Φ(k > k0, f)→ 0. (7.5)

The external force should not be forming the turbulence flow at k >
k0 but this should be created by the nonlinear coupling and viscosity,
i.e., by the natural cascade dynamics.

Let us consider the Navier-Stokes equation in Fourier space for
the velocity Fourier image (3.4):

vi(k, f) = Fi(k, f)G(k, f)− 1/2(iλ0)G(k, f)Pijk·∫
dDqdf′vj(q, f

′)vs(k-q, f=f’), (7.6)

where λ = 1 is introduced for the purposes of generating the pertur-
bation expansion and D = 3.

G0(k, f) = (−if + νk2)−1, (7.7)

is the zeroth order (bare) Green function and:

Pijs(k) = (δij − kikj/k2)ks + (δis − kiks/k2)kj . (7.8)
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Let assume now that instead of having Φ(k) defined properly as in
(7.5) we stir fluid with a random Gaussian force with a scaling power
law correlation function stretching for all wavenumbers in the interval
k0 << k << kd:

Φ(k, f) = A/ky. (7.9)

What one can argue in this case is that the universality should be
insensitive to the nature of forcing and the natural solution will be
formed anyway. But this is wrong. Because if the forcing (7.9) pumps
too much energy into the high wavenumber velocity harmonics the
energy spectrum may be a less singular than K41 in the limit of low
wavenumbers and flatter than K41 in the limit of high wavenumbers
in the inertial range. That is to say that the energy spectrum would
be E(k) ∝ k−x with x < 5/3 and hence the excess of energy by
comparison with K41 with x = 5/3. It all depends on the value of
exponent in (7.9) and the corresponding solution of the Navier-Stokes
equation. Such values of y > ycritical that indeed lead to E(k) ∝ k−x
with x < 5/3 define a model of randomly stirred fluids (RSF) to
distinguish it from the genuine HIT model. It would seem that x =
5/3 corresponds to ycritical above which the turbulent regime does not
realize. Then if we could solve the RSF model we could determine

critical With the choice of forcing (7.9) the Eqs. (7.6) are naturally
also invariant to the set of scaling transformations similar to (7.1)
but in Fourier space. To avoid confusion it should be remembered
that the rescaling transformation r → r corresponds to the inverse
rescaling in conjugate space, i.e., k→ λ−1k.

Now we note that the choice of y = D = 3 in (7.9) corresponds
in physical space to the scaling (7.2); this can be checked by a di-
rect power counting. And equipped with all the above reasoning we
may conclude that K41 might be indeed a solution of (7.6)-(7.9) for
a particular choice of the exponent y i.e., Φ(k, f) = y = D = 3. But
of course it is still necessary to prove that the molecular viscosity
is truly renormalized by the nonlinear coupling to become the eddy
viscosity (2.11), as is demanded by the last of the scaling transfor-
mations (7.1). If this is proved than the velocity field correlation
function and the energy spectrum indeed would be K41. This proof
was given in a classical paper of DeDominicis and Martin. (1979)
in which the authors formulated for the first time the application of
renormalization group theory (RNG) for randomly stirred fluids in
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the asymptotic limit of low wavenumbers and frequencies (k, f)→ 0.
The RNG yields a converging perturbation theory for RSF model

to all orders for the renormalization of molecular viscosity that “dress-
es up” into eddy viscosity familiar from the K41 theory (see the
relation (3.33) for instance) and the asymptotic power law for the
correlation function of vi(k, f) in the limit of (k, f)→ 0.

The RNG for this model shows how the nonlinear coupling renor-
malizes, ”dresses up” the bare molecular viscosity ν so that it becomes
instead of a constant the eddy viscosity scaling function of wavenum-
ber in accordance with the rule (7.1). As one says ν flows in the
parameter space and reaches a fixed point. For a particular case of
y = D the fixed point is z = 2/3 and in consequence the asymptotic
solution for the energy spectrum in the limit (k, f)→ 0 is indeed the
K41 spectrum. It should be again emphasized that this solution is
not really a solution for turbulent flow but for RSF with y = ycritical
as was explained above. Nonetheless, this is a fairly remarkable result
in its own right in retrospect and this should be clearly explained.48

Any perturbation theory is developed around the zeroth order
solution for the velocity field:

v
(0)
i (k, f) = G0(k, f)Fi(k, f). (7.10)

This zeroth order solution is what the velocity of fluid would have
been if there was no proportional to λ0 nonlinear coupling. Of course
it does not have sense since the whole gist of the Navier-Stokes
equations is in nonlinear coupling that generates velocity harmon-
ics and universal velocity field statistical correlators independent of
Fi. Hence the perturbation theory should be built in powers of λ0.

48There are thousands of subsequent papers and books on application of RNG
to turbulence. It was considered a breakthrough by some for a period of time for
the reasons best left to historians of science to analyze. The passionate expec-
tations coupled with handsome research grants were so high that as a matter of
curiosity even such mundane objects as internal combustion engines and likewise
devices were treated by means of field theoretical methods of RNG. For a good
review of the methods I can refer to McComb (1985). Of course RNG does not
even approach properly the theory of turbulence and can be delegated to many
other semi-phenomenological approaches that by themselves fail to capture what
is most essential in turbulence - the intrinsic coherence. However proper appli-
cation of RNG in conjunction with far reaching assumptions on the structure of
high wavenumbers turbulence allows important calculations to be made as will
be demonstrated below.
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This is done by substituting the zeroth order solution into the cou-

pling term in (7.6) to generate the next term approximation v
(1)
i (k, f)

proportional to λ0 and then substitute v1
i (k, f) into the coupling term

to obtain the next approximation v
(2)
i (k, f proportional to λ2

0 and it-
erate the procedure ad infinitum. After that the statistical averaging
over the Gaussian force (7.5) is made. While developing the pertur-
bation theory the first task is to identify the dimensionless parameter
of expansion. It was understood by DeDominicis and Martin (1979)
that with the choice of forcing (7.9) this parameter is:

λ = λ0(A/ν3)1/2. (7.11)

Since there is only one dimensionless parameter in the Navier-Stokes
equation, the Reynolds number, λ is just proportional to the Re. In
other words the expansion parameter is large and the most interest-
ing case is Re → ∞. The expansion in powers of infinite parame-
ter should not necessarily deter from the perturbation theory. Such
situations were encountered in many problems of field theories and
statistical mechanics and sometimes the series can be either regular-
ized or summed up, if one is lucky to end up with finite results. The
so-called renormalized perturbation theory was formulated for the
Navier-Stokes equations with a general type random force by Wyld
(1961). The renormalized perturbation theory reformulates all the
bare perturbation series in powers of the exact summed up quanti-
ties, but these remain infinite series that cannot be summed up unless
some drastic assumptions on the structure of velocity are made. To
be more explicit the perturbation theory will renormalizes the Green
function, the forcing and the coupling itself as follows:

G0 → Gren = (−if + νk2 +
∑

(k, f))−1,

Φ→ Φren,

λ→ λren(k, f), (7.12)

< vi(k, f)vj(k, f) >= |Gren(k, f)|2Φren(δ(ij)−kikj/k2)δ(k+k′)δ(f+f′),

where the self-energy
∑

(k, f) is the renormalized viscosity term sim-
ilar to the phenomenological eddy viscosity. Similar expressions are
obtained for all orders of the velocity correlation functions, which
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we will designate symbolically as < v(n) >, the point is that now,
all the quantities in (7.12) are incomprehensible functionals, infinite
expansions in powers of < v(n) >. That is:

Gren=Gren(k, f;<v(n)>,<v(n−1)>,<v(n−2)..... <v(2); Φren;λren),

Φren=Φren(k, f;<v(n)>,<v(n−1)>,<v(n−2)..... <v(2);λren;Gren),

λren=λren(k, f;<v(n)>,<v(n−1)>,<v(n−2)..... <v(2);Gren; Φren; ),
(7.13)

<v(n)>=V (n)(k, f;<v(n−1)>,<v(n−2)..... <v(2);Gren; Φren;λren),

with n→∞ and each equation being effectively an infinite expansion
in powers of λren. The only way to deal with this totally useless sys-
tem is to break the infinite chain of equations at some finite n′. But
the assumptions go even further. To solve the system (7.13) it should
be assumed that all order velocity correlation functions < v(n) > can
be factorized as products of powers of the square correlation functions
< v(2) > Such procedures are also employed in certain statistical me-
chanics problems with strong interactions, e.g., dense systems, or the
attempts to derive the Navier-Stokes equations from the first princi-
ples. In all these cases the explicit or implicit assumptions are made
that are equivalent to neglecting the strongly nonlinear nature of in-
teractions so that for all practical purposes they are treated as weakly
interacting systems, e.g., rarified gases and by equations similar to
Boltzman equation for rarified gases.49 Essentially the same happens
for (7.13). In fact the inviscid Euler part of the Navier-Stokes equa-
tions is of course Hamiltonian (Arnold, 1974), although it is not seen
readily. However when made explicit in one way or another the clo-
sure of (7.13) results in Boltzman like equations (Levich, 1981). All
other forms of closures can yield only equivalent results.o The result

49What is lost in all these treatments is coherence due to strong interactions. In
the cases like say superfluidity, for instance, the coherence is possible to recover
in the perturbation analysis for the reason that there is one or another small
parameter in the system, e. g., a small number of particles passing over to
superfluid state in non-ideal Bose gases. This makes the theory renormalizable.
In turbulence of fluids there are no parameters except Re. An original idea is
to seek solution of the Navier-Stokes equations was applied with dixterity for
nonlinear analysis of stability of Beltrami flows (Libin, 2008), with Re−1/2 as
small parameter.
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for all of them is exactly the same: K41 spectrum and no intermit-
tency, no coherence, no structures. And this is easy to understand.
Because the instant we make a closure and express the high order
velocity correlation functions as products of powers of the pair corre-
lation functions we throw a child from the bath together with water
because we assume a quasi-Gaussian approximation for the velocity
field. The usual justification for this was that experimentally the
velocity field at one point is nearly Gaussian. And at two points is
not so far from the Gaussian and so forth. But we know that the
high wavenumber velocity harmonics are strongly non-Gaussian and
if the random phase approximation is assumed to the helicity related
phases (the angle between Rev(k, f) and Imv(k, f), see Section 5)
this would leave to severe contradictions.50

The RNG is generally speaking different from the usual pertur-
bation theories and closures in that it does not make a priori drastic
assumptions of locality and effectively weak interaction and on the
contrary was successful, for instance in second order phase transition
theories, in elucidation of strongly interacting coherent fluctuations of
order parameters. This is why RNG initially generated hopes among
physicists who tried to roll in with their success in one enigmatic
field of research into another. Unfortunately turbulence is vastly
more complex problem and the success did not repeat. Nevertheless,
certain important lessons could be learned, as well as lessons were
drawn from the perturbation theories and closures, and these can be
all used to make another step towards understanding of turbulence
as dynamical system.

The RNG for practical applications also needs the perturbation
theory but different in nature. Also, by nature the RNG analysis
is asymptotic. It deals either with (k, f) → 0 limit or the opposite
(k, f)→∞ limit, traditionally called respectively ”infrared” and ”ul-
traviolet” limits by association with the quantum field theories.

Let us consider briefly how it works for the RSF model (7.9) in the

50If purely Gaussian approximation is assumed then the triple order velocity
correlation functions that are responsible for the energy transfer to high wavenum-
bers would be identically zero. Thus certain rudimentary phase coherence is al-
ways present (Batchelor, 1953). But in the quasi-Gaussian approximation only
even order correlation function are factorized as products of the pair correlation
function and triple order correlation function is then automatically also expressed
through the same (e.g., Monin and Yaglom 1975).

Concepts of Physics, Vol. VI, No. 3 (2009) 337



Eugene Levich

limit (k, f)→ 0. There are several steps involved in RNG application
to dynamical systems. Also, there are different versions of RNG
more or less equivalent to each other. Below the exposition will be
a little bit different, a mixture of classical steps and some purely
technical innovation, to prepare readers to the next section in which
an altogether novel approach will be developed.

1. First we define the wavenumbers space, k-space, for the prob-
lem kd ≥ k > 0. It is important to remember that there is no low
wavenumbers cutoff since the infrared asymptotic limit (k, f → 0 is
considered. Consider a shell space in the wavenumbers space:

kd ≥ q > kde
( − 1), (7.14)

where l is an infinitesimal scaling parameter introduced for the frac-
tal analysis in physical space in the previous section, but now the
rescaling is in the direction of smaller wavenumbers or bigger scales,
hence l reverses but reverses it again since we are considering now
the scaling in conjugate space. Let us formally split the nonlinear
term in (7.6) as follows:

J{v}i = J<i {v}+ J>i {v}, (7.15)

where:

J>i {v} = (i/2)λG(k, f)P (k)

∫ +∞

−∞
df ’

∫ kd

kde−l
dDqv(q, f′)v(k-q, f-f ’)

(7.16)
where we omitted all tensor and vector indices since they will play
no role in what follows. Only the scaling powers matter.

2. Now we ”solve” (7.6) by developing a perturbation expansion
for the part of interaction J> by iterations in powers of λ substitut-
ing the velocity field zero order approximation (7.10) into the part of
nonlinear term (7.16) to generate v(1) as the first power of λ approxi-
mation and then substituting it into the part of nonlinear term (7.16)
again to generate the λ2 approximation and iterating the procedure
ad infinitum. Therefore the procedure is like in the usual pertur-
bation theory but only a small part of the nonlinear term is treated
perturbatively. The remaining part of interaction J< is remained un-
touched. The thus generated power series is averaged over the part of
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Gaussian force F> from the shell kd ≥ q > kde
−l. Because the forc-

ing is Gaussian the parts F> and F< are statistically independent.
This means for instance that < F >F

>

= F<, < v >F
>

= v< and the
odd powers correlation functions < (F>)2n=1 >= 0. The result is
the following solution for v< as an iterative expansion in powers of
λ:

v<(k < kde
−l, f) = GF<(k < kde

−l, f)+

+(−iλ
2
G(k, f)P (k)

∫ l

>

< v(q, f ’)v(k-q, f-f ’ >F
>

+

+

∞∑
n=1

(−iλ
2

)n+1v(n) +Q<{v<}, (7.17)

where:

v(n) =

∫ n

>

{P (k)......P (k−
n−1∑
i=1

q(i))}×

×{G(k, f).....G(k−
n−1∑
i=1

q(i), f−
n−1∑
i=1

f(i))}×

< v(q, f(1))........v(q(n), f(n))v(k-q, f− f(1))...

...v(k−
n−1∑
i=1

q(i), f−
n−1∑
i=1

f(i))} >F
>

=

=

∫ n

>

Ψ(q(1)....q(n), f(1)....fn))δ(

n−1∑
i=1

q(i))δ(

n−1∑
i=1

f(i))×

×{P (k)....P (k−
n−1∑
i=1

q(i))}×

{G(k, f)........G(k−
n−1∑
i=1

q(i), f−
n−1∑
i=1

f(i))}v<(k, f), (7.18)

where the appearance of δ − functions is the usual consequence of
statistical homogeneity and stationarity of the velocity field and sub-
sequent translational invariance for the correlation functions:

Ψ(q(1).....q(n), f(1).....f(n))δ(

n−1∑
(i=1

q(i))δ(

n−1∑
i=1

f(i)) =
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=< v(q, f)....v(q(n), f(n)) >F
>

;∫ n

>

=

∫ n∏
i=1

dq(n)df(n), (7.19)

where kd > q(n) > kde
−l and in all orders in(7.19) one substitutes

the zero order approximation:

v<(k < kde
−l, f) = GF<(k < kde

−l, f). (7.20)

Therefore Ψ(q(1)......q(n), f(1).....f(n)) is factorized as a sum of all per-
mutations of products of Φ>. The remaining term Q<{v<} is also
an infinite expansion containing all order nonlinearities in powers of
v<(k, f). One can ask a question what is the use of the incredibly
complicated looking equation (7.17)? But this is the whole power
of RNG. Its prime objective is to establish what happens with the
coupling under the iterative application of the RNG steps. If the
coupling grows then the problem is not renormalizable. But if does
not grow and on the contrary reaches some fixed point and this is a
stable fixed point then all the terms in the infinite and seemingly in-
comprehensible expansion (7.17) have the same extent of singularity
that does not increase for the high order terms in powers of coupling
constant λ. Usually therefore it is enough to consider the terms only
to powers λ2.

To simplify matters the perturbation expansion should be con-
sidered now in the limit (k, f) → 0. Considering with attention the

product {P (k).....P (k −
∑n−1
i=1 q(i))} and taking into account that

δ(
∑n−1
i=1 q(i)) = 0, it is easy to notice that in this limit the lead-

ing term in powers of k/q(i), where q(i) >> k is from the shell, is

∝ k2P (q(2)....P (
∑n−2
i=1 q(i)) to all orders of λ. Similarly the prod-

uct of Green functions in (7.18) simplifies in such a way that only
the first and the last of them in the whole product are k dependent,
to leading order in powers of (k/q(i)) and f/f(i) and to all orders in
powers of λ in the limit of (k, f) → 0. As a result the k dependence
in the expansion (7.18) will be the same to all orders of λ. Then
it can be readily seen that to all orders the perturbation expansion
the leading terms in powers of (k/q(i)) and f/f(i) can be represented
through renormalized Green function with the self-energy (real ):∑

(k, f) ∝ λ2k2. (7.21)
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Effectively the molecular viscosity becomes ν → ν(1+O(λ2, l)). This
is fairly remarkable because the perturbation expansion carried out
in the asymptotic RNG spirit captured immediately the fact that
the nonlinear term naturally renormalizes viscosity. But this is the
same as renormalization of the coupling constant λ = λ0A

1/2/ν3/2 =
Re. In other words Re → Reren(l) < Re. Since the parameter of
renormalization l is infinitesimal this reduction of Re is small. But
after many iterations of the shell perturbation scheme the reduction
factor may become large in the limit k → 0 as some singular power
law function of k. Note that the forcing does not renormalize to the
leading order of the perturbation expansion at all, so that y → y.

3. To see how it happens one carries out the next step of RNG
with the following rescaling k′ → kel. . The meaning of this step is to
return to the original span of wavenumber space kd > k′ > 0 and to
see if the dynamical equation remains invariant and if yes what then
happens with λ. It is now necessary to invoke the time or frequencies
scaling like in (7.1). We write for the frequencies exponent:

[f] = −z, (7.22)

meaning that when k′ → kel at the same time f→ fezl. Now to avoid
confusion in superscripts it is convenient to redefine again k′ = k and
f , = f, but remembering that both are the rescaled values. The
rescaling now should be carried out in (7.17) and it is enough for now
to do it with the term (7.16) and the left side of (7.17). While the
rescaling (k, f) → (kel, f → fezl the velocity field inside the shell is
rescaled via its zero approximation (7.20). Hence:

[v>(k, f)] = [F>] + [G]

[G] = [f] = z (7.23)

[F>] = [Φ]/2 +D/2 + z/2 = (y +D)/2 + z/2,

where for the derivation of the relations (7.23) we have used (7.3),
(7.9), (7.20), the dimensional properties of δ− functions, [δ(k+k′)] =
D, [δ(f+ f,)] = z and the assumption z < 2. The coefficient in front of
the left side of rescaled (7.17) should be kept equal to unity so that
after the rescaling the equations remain invariant. Finally one finds
that the nonlinear coupling terms rescale as follows:

λ→ λ(l) = λexp{3/2z − 1 + (y −D)/2}l. (7.24)
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It is concluded that λ(l) = Reren(l) remains constant and does not
grow with l for the following value of z:

z = 2/3− (y −D)/2. (7.25)

In particular for y = D one has z = 2/3. This value corresponds to
the K41 spectrum as was discussed a number of times before since it
corresponds to the eddy viscosity defined by (3.34). But this can be
also seen directly from the definition:

E(k) = k2

∫
dfE(k, f) = kD−1

∫
dfΦren(k, f)|Gren(k, f)|2 =

= kD−1

∫
dfΦ(k, f)|Gren(k, f)|2. (7.26)

Since [Φren] = [Φ] = y it follows:

[E(k)] = −(−D + 1 + y + z). (7.27)

To check the correctness of the above analysis let us see what happens
with the bare viscous term under the above RNG manipulations. The
m→ iterations of perturbation expansion and rescaling, the two basic
steps of RNG, results in the following for y = D:

νk2 → νe(z−2)lk2......→ e(z−2)ml → limm→∞k
−4/3k2 = k2/3.

(7.28)
The last step that should be done is to check if the fixed point value
(7.25) is stable as a function of l, i.e., it is necessary to make sure
that λ(l) has a minimum as a function of l at the fixed point. To do
this one considers the next order terms expansions that are not zero
for this fixed value of z. This results in a nonlinear recursion relation
for the coupling parameter that shows that it reaches a fixed point if
the relation (7.25) is fulfilled. In fact the fixed point for the coupling
constant is stable and the subsequent results are true to all orders of
the RNG perturbation expansion provided that y ≤ D (DeDominicis
and Martin, 1979; McComb, 1991).51

51Note that the parameter y and D always enter in the combination ±(y−D).
For one used to RNG treatment of static systems, e.g., phase transitions, this
is unusual. But the actual ”dimensionality” of scaling dynamical systems is this
combination. The higher order nonlinearities in particular are all proportional to
(y−D) and this is why y = D is a borderline for the stability of RNG procedure.
In the next section where we will introduce functional integral representation this
point will become quite apparent.
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The conclusion is that the infrared limit RNG generates a nontriv-
ial solution corresponding to a seemingly stable fixed point coupling
to all orders of the perturbation theory provided that y ≤ D. How-
ever even with this restriction on y there is no guarantee that there is
no crossover to another solution in the opposite limit of (k, f) → ∞,
as was pointed out in DeDominicis and Martin (1979). For the bor-
der line y = D the spectrum becomes indeed K41. But actually it
is the limit of (k, f) → ∞ that should be looked for if we want to
capture the properties of turbulence itself, because the energy cas-
cade goes to the large wavenumbers and frequencies (k, f)→∞, and
it is in this is the limit the asymptotic solutions should be sought.
If they exist in this limit they can depend on powers of the integral
scale L = k−1

0 , and on the contrary the solutions cannot be depen-
dent on the high wavenumbers cutoff kd, or equivalently Re, except
from possible logarithmic pre-factors. In the next section the ultra-
violet RNG analysis will be conducted in detail and shown to furnish
very useful results when considered in conjunction with certain basic
assumptions regarding the dynamical role of BCC.

At this point the most disappointing in the above analysis of RSF
model is that it does not really reflect the reality of turbulence. In-
deed, it is barren of intermittency and coherence. Any order velocity
and velocity derivatives correlation function would have the expo-
nents as must have been in accordance with K41 theory and with
intermittency parameters µ(n) = 0. The RNG theory is correct to
all orders of perturbation expansion and self-consistent as far as the
RSF model is concerned and still irrelevant for turbulence. It picks
up a wrong solution. This should have been clear from the start. In-
deed, the asymptotic limit that was considered is the infrared limit in
the terminology of field theories,(k, f)→ 0. There cannot be a cutoff
dependence in this limit. But intermittency and scaling together are
not possible unless the ”anomalous” powers of k are not matched by
the corresponding powers of the integral scale L = k−1

0 .52

Let us go back to the usual perturbation theory methods that
also yielded K41 energy spectrum in their many modifications years
before the RNG methods were introduced for the treatment of singu-
lar dynamical systems. The advantage of renormalized perturbation
theory over RNG is in that it is directly applied to turbulence model

52Except from possible logarithmic pre-factors to power laws.
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with forcing (7.5) and not necessarily to RSF model. If the chain of
equations (7.13) is broken to orders (λren)2 terms and then the quasi-
Gaussian assumption is made one obtains a closed system of equa-
tions for the velocity two point correlation function < v(r, t)v(0, 0) >
, and the energy spectrum E(k) by the definition (3.13), Φren, Gren

and λren. This approximation was first analyzed by Kraichnan (1973
and references therein) and called Direct Interaction Approximation
(DIA). The meaning of DIA is that among all the interactions be-
tween the velocity harmonics the only ones that are important are
for the velocity Fourier harmonics with the triads of wave vectors
that are of the same order by absolute value. This assumption was
already mentioned above in Section If we look at the Navier-Stokes
equations (7.6) this would mean the following triads:

|k| ∼ |q| ∼ |k-q|. (7.29)

In fact this approximation seems to be the opposite of RNG anal-
ysis previously considered where the interactions between velocity
harmonics of all scales were taken into account. But the reason-
ing behind DIA has sense and this is why. It was long understood
that the nature of interactions between turbulent eddies is twofold.
The small eddies are embedded inside large eddies like in the Rus-
sian dolls. It is clear therefore that the strongest interaction between
such disparate sizes eddies is just convection by a large eddy of the
small ones. Of course the small eddies are also strained by them. But
it seems that there should be no significant flux of energy from the
eddies of strongly disparate sizes and in this sense these interactions
are not dynamically important. The real exchange of energy should
be among the eddies of comparable size and therefore the dynami-
cally significant interactions are primarily local in Fourier space like
in (7.29).

In the framework of perturbation theory the justification comes
mathematically from the following deep observation. The largest
terms in the perturbation expansions (7.13) comes from the terms
corresponding on the contrary to the interactions between the veloc-
ity harmonics of strongly disparate scales |k| >> |q|. These terms
appear as expansions in ever increasing powers of L1/3 and are un-
renormalizable. However Kraichnan suggested and partially justified
mathematically that the leading terms should be just an expansion of
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the Galilean velocity shift that comes from convection small eddies
by the large ones and hence can be removed by Galilean transfor-
mation. If to think about it this would be as if one abandons for a
time the Eulerian fixed observer perspective of fluid motion in favor
of the Lagrangian reference frame co-moving with fluid elements, the
small eddies in this case. The difficulty is that the large eddies move
randomly and this is why Kraichnan introduced a concept of random
Galilean transformation that was supposed to remove the leading
singularities in the perturbation expansion. Another difficulty is of
course that there are an infinite number of other singularities in the
perturbation expansions equally unrenormalizable. It takes a stretch
of imagination that all of them can be removed by random Galilean
transformation. Such claims were made by some but I disregard
them since no doubt in my mind that they contained some trivial
mathematical mistakes inevitably made when one tries to make ex-
act statements as regards unrenormalizable perturbation expansions.
Nevertheless, the energy transfer is most likely indeed dominated by
local interactions in Fourier space at least in the limit of Re → ∞.
The DNS start giving support to the locality principle although it
appears that the contribution of distant in Fourier space interactions
decreases very slowly with the growth of Re ( Mininni, et.al., 2008b).

Nevertheless, if the assumption of wavenumbers space locality is
made this inevitably leads to the K41 spectrum. No other result is
possible since the terms with L dependence are all removed and then
the dimensional considerations and scaling result in K41 unambigu-
ously. It should be noted that although the infrared RNG perturba-
tion theory seemingly take care of distant in k - space interactions
this is an illusion. Somewhere balong the line such interactions cancel
out and solely the interactions of the type (7.29) remain.

Despite its obvious shortcomings DIA has nice properties. It al-
lows calculating the pre-factor Kolmogorov constant that is not far
from the experimental. And the Kolmogorov constant allows esti-
mating the von Karman constant for the boundary layers and pipes
logarithmic flow profile (6.23). The same even better can be done
with the help of infrared RNG theory for RSF model. Clearly DIA
and RNG belong on a certain fundamental level to the same class of
theories. The fact is that a good number of useful constants char-
acteristic of turbulent flows can be estimated from the drastically
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truncated models that all have K41 as their solution.p

8 Dynamical Theory 2: Perturbation Theory and
RNG Analysis in Asymptotic Limit of High
Wavenumbers and Frequencies

In this section a totally different approach to the dynamics of tur-
bulence will be considered. It will be bases on a number of assump-
tions that will become clearer as it goes. The central assumption is
that turbulence dynamics is dominated by a fractal sub-domain and
all 3D turbulent flow is formed and sustained by this sub-domain.
It is an indication well supported by DNS and some experimental
facts that were discussed vabove that this sub-domain is BCC, but
the properties of BCC will not play direct role in the dynamical
phenomenology developed below. The main objective here will be to
determine the fractal dimension of the sub-domain while its existence
is presupposed.

It is well known that the turbulence model described by the
Navier-Stokes equations with Gaussian random source (forcing) can
be reformulated in the language of functional integrals (e.g., Monin
and Yaglom, 1975). Admittedly functional integrals have not been
very useful so far for real calculations. But they provide sometimes a
different way of interpreting phenomena and this may be conducive
for making and interpreting specific assumptions that will be made
below. A particular way to formulate the problem for turbulence
was developed in Levich (1987) and this paper is referred to for some
technical details.

The RSF model is the simplest to reformulate as a functional
integral probabilistic problem of the type (2.2). Following the general
definition (2.2) let us consider first the following functional:

Z =

∫
W{v}Dv = lim∆→0N(∆)−1

∫
Dvexp{−Θ(2){v/∆}, (8.1)

where Θ(2) is the functional:

Θ(2) =

∫
dV dt{∂tv− J{v} − ν∆v + F}2;

346 Concepts of Physics, Vol. VI, No. 3 (2009)



Coherence in turbulence: new perspective

J{v} = [v× ω]−∇(P + v2/2), (8.2)

Where the integration Dv(r, t) in (8.1) is, as in (2.2), over all v(r, t)
turbulent flow realizations, each realization being the velocity field
in all (3+1) space/time. F is the external source at large scales
defined as in (7.5) that is assumed to be a Gaussian random function
defined as in corresponding to Gaussian forcing at large scales defined
through the correlation function as in (7.5), N(∆)−1 is a normalizing
factor and ∆→ 0 is a parameter that can be likened to temperature
in equilibrium systems. It is easy to prove that the integrand in (8.1)
is a functional δ − function. Indeed, let us chose a new integration
variable:

X{v} = ∂tv− J{v} − ν∆v. (8.3)

Then for Z one has:

Z =

∫
W{v}Dv =

= lim∆→0N(∆)−1

∫
DXdet{v(r, t)/X}exp{−Θ(2){v}/∆2}. (8.4)

But the Det by a change of functional variables can be always made
unity. To prove it is necessary to consider the discretized velocity
field model on a lattice. The choice of lattice grid can be arranged in
such a way that Det{v(r, t)/X} is independent of v(r, t) and can be
absorbed into redefined normalizing pre-factor. Thus the integrand
in Z is indeed a functional δ − function:

Z = lim∆→0N(∆)−1

∫
Dvexp{−Θ(2){v/∆2} =

=

∫
Dvδ{v− vNS} = 1. (8.5)

Hence as far as the statistical properties (2.3) are concerned the Eq.
(8.1) is an identical reformulation of the Navier-Stokes equations for
RSF model. The only contributions into Z will be the velocity real-
izations that are the solutions of the Navier-Stokes equation vNS{F}.

The Z − functional can be reformulated for the velocity field in
Fourier space. One has evidently:

Θ(2) =

∫
(X)2dV dt = (2π)−3

∫
|X̃(k, f|2dkdf, (8.6)
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where:

Xi(k, f) = (−if + νk2)vi(k, f)+

+(iλ/2)Pijs(k

∫
dDqdf′vj(k, f)vs(k-q, f-f ’) + Fi(kf). (8.7)

Therefore:

Z = lim(∆→ 0)N ′(∆)−1

∫
Dv(k, fexp{−Θ(2){v}}/∆2}, (8.8)

where N ′(∆)−1 is another normalizing pre-factor. It is natural to
average Z over all realizations of the Gaussian external force, since
the velocity correlation functions in turbulence are independent of
the force realization. In RSF model this is not true as we have seen
but in this model the dependence is only on the scaling properties
of Φ(k, f) = A/kγ as given above by the relation (7.9). We define
< Z >F as follows:

< Z >F=

∫
DFW{Fi}}Z =

∫
DFexp{−

∫
dDkdfΦ−1

ij (k, f)FiFj}Z

(8.9)
where we substituted for W{F − i} the Gaussian probability func-
tional and the pre-factor Φ(ij)−1 is determined by (7.3) and can be
interpreted as ”temperature”:

Φ(ij)−1(k, f) = (δij − kikj/k2)Φ−1(k, f). (8.10)

The integration of the Gaussian functional is trivial with the result
(hereafter the normalizing pre-factors are neglected):

< Z >F=

∫
dv(k, f)W (v,Φ), (8.11)

With the probability distribution:

W (v,Φ) = exp(−Θ
(2)
Φ ), (8.12)

where:

Θ
(2)
Φ =

∫
dDdfX′(k, f)X′(−k,−f)/Φ(k, f), (8.13)
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where:

X ′i(k, f = (−if + νk2)vi(k, f) + (iλ/2)Pijs

∫
dDdf′vj(k, f)vs(k-q, f-f ’).

(8.14)
And finally since the concern is the velocity (and other turbulent
fields) correlation functions we can write formally like in (2.3) but
now with the specific probability distribution functional W{v,Φ}:53

<

n∏
i=1

(ri, ti) >=

∫
Dv

n∏
i=1

v(ri, ti)W{v,Φ}. (8.15)

What has been achieved by the above identical transformations? It
seems not much, but still we created a finite width in the probabil-
ity distribution function (8.12). Now instead of the previously zero
width ∆ → 0 we have ”temperature” that is a scaling function in

(k, f) - space. The functionals X ′i(k, f) and Θ
(2)
Φ are now independent

of the external force Fi(k, f) and since the ”temperature” in (8.13) is
not zero everywhere in (, d) space it is evident that the contribution
to < Z >F comes not necessarily only from the decaying with time
solutions of the unforced Navier-Stokes equations X ′i(k, f) = 0. Since
a functional integral unless it is a Gaussian one is not possible to cal-
culate it still appears as if the mathematical equilibristics that leads
to them remains exactly this-the equilibristics. Of course a pertur-
bation theory can be developed for the form (8.15) but it would be
equivalent to the perturbation theory analysis of certain differential
equations. Since the functional integrals are good only for the calcu-
lation of correlation functions it may seem that much less information
is required about the velocity field and this would result in simplifi-
cations for instance of DNS. In practice however it does not happen
and everyone still prefers to carry out the DNS of the Navier-Stokes
equations themselves. One of the main reasons why the functional
integral forms are used in this paper is that interpretations that they
allow are sometimes easier to understand than the ones furnished by

53Or the correlation functions can be expressed as functional derivatives of
< Z >F . In the same way can be defined all other velocity and velocity derivatives
correlation functions and structure functions. Since no particular calculation will
be made using the functional integral language we skip these particular definitions
as not used.
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local in space differential equations. But in Section 9 below we will
show how the functional integral representation allows a global ap-
proach and new results that are difficult to get within the local in
space/time differential representation.

Let us try first to interpret the RSF models and their relation to
real turbulence model from the perspective of functional integrals.
It seems that since for turbulence model the effective temperature
Φ(k > k0, f)→ 0 the only and very few realizations of v(k, f), almost
purely decaying ”low temperature” solutions of the Navier-Stokes
equations, |X|2k3f < Φ(k > k0, f → 0, would contribute to the cor-
relation functions (8.15), since the integrand in the functional inte-
gral tends to a functional δ - function. But this is not exactly true.
Since in general any realization of v(k, f) should be taken into ac-
count for calculating (8.15) there is an infinity of realizations that
are far from the decaying solution of the Navier-Stokes equations
that would contribute by their sheer number, although it may be
that each particular contribution would be exponentially small. If
these ”non-classical” realizations are taken into account first, and
not the limit Φ(k > k0, f) → 0, then the result in principle can
be different. This would imply non-analyticity in the procedure of
calculations of the correlation functions and since there is only one
parameter in the problem, the Reynolds number, it should be safely
assumed that such non-analytical contributions may arise in the limit
Re → ∞. What one can say about v(k, t) - realizations such that

Θ
(2)
Φ >> 1? Formally, such configurations can be assumed solutions

of the renormalized Navier-Stokes equations X ′i(k, f) = F ′i , where
F ′i is generally unknown random function. This function determines
the extent of deviation from the decaying solutions X ′i(k, f) = 0; it
can be seen as renormalized driving force in the Navier-Stokes equa-
tions. Let us decompose F ′i into a Gaussian and non-Gaussian parts:
F′ = F′reg + F′sing, where we designated reg and sing, respectively
for quasi-Gaussian and non-Gaussian, generally intermittent, veloc-
ity field components for a purpose that will become clear shortly.
Thinking consistently in the spirit of RNG shell integration we can
formulate a new generating functional for the renormalized Navier-
Stokes equations with the integrand as follows:

Wren(v,Φren) = exp(−Θ
(2)
Φ,ren,
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Θ
(2)
Φ,ren =

∫
dDdf|X′(k, f)− F′sing|2/Φ(k, f)ren, (8.16)

where Φ(k, fren is effectively a new renormalized temperature distri-
bution determined by the forcing F′reg and corresponding to a higher

level of fluctuations in the interval kel > k > k0. The velocity cor-
relation functions is determined with the new probability distribu-
tion (8.16). The total number of v(r, t) - realizations that would
contribute to the generating functional is now less because some of
them were already taken into account and resulted in the renormal-
ized probability distribution. The iteration of this reasoning should
further diminish the number of these realizations while giving rise
to temperature at respectively higher values of the wavenumbers ad
infinitum. The assumption is that such reasoning results in a fixed
point corresponding to such forcing that there would be only finite
number of v(r, t) - realizations left to contribute to the correlations
functions. The assumption of scaling tells us that if such fixed point
exists then the forcing corresponding to this fixed point should be
the scaling function (7.9).

Let us discuss now the meaning of F′reg and F′sing. It starts from
the splitting of the velocity field in physical space in every realization
into two components:

v(r, t) = v(r, t)reg + v(r, t)sing, (8.17)

where it is assumed that v(r, t)singv(r,t) is the intermittent velocity
field inside small sub-domains that in the limit Re→∞ will tend to
a fractal space with dimension D < 3 and v(k, t)reg is the velocity
field outside of these small sub-domains. We assume further that
the velocity field v(k, t)reg is quasi-Gaussian in the spirit of all phe-
nomenological fractal theories of the Section 5.54 And here we make
the central assumption that the total contribution of all v(k, t)sing
into the correlation functions (8.15) is in a certain sense of the same
order as of all v(k, t)reg - sub-relations. Let us try to define this

54Attention should be paid to the fact that old order correlation functions
are not necessarily zero in the quasi-Gaussian approximation. If, for instance, a
certain third order velocity correlation function in Fourier space would be zero
the nonlinear transfer of energy would be zero. But what is true in the quasi-
Gaussian approximation is that any odd order correlation function is expressed
eventually via the pair correlation functions so that a closure can be implemented.
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assumption in a quantitatively useful way. Let us rewrite (8.15) as
follows:

<

n∏
i=1

v(ri, ti) =

∫
DvsingDvreg

n∏
i=1

v(ri, ti)W{v,Φreg}. (8.18)

Instead of calculating the functional integral over all possible v(k, t)sing
- sub-realizations we shall try to estimate the contribution of a certain
averaged singular sub-realization in a way reminiscent of mean field
approximation in statistical mechanics. This approximation mathe-
matically looks as follows:∫

DvsingW{vreg,vsing,Φreg} ≈ exp[− << Θ(2) >>], (8.19)

where the averaging ¡¡¿¿ is done over all v(k, t)sing - sub-realization.
In consequence for the correlation functions it will be now:

<

n∏
i=1

v(ri, ti) >=

∫
Dvreg

n∏
i=1

(ri, ti)regW{vreg,Φren}, (8.20)

where the reduced probability distribution functional is as follows:

W{vreg,Φren} = exp[− << Θ
(2)
Φren >>] (8.21)

and:

<< Θ
(2)
Φren >>=

∫
dDdfΦ−1{|Xreg|2+ << |Xsing|2 >>}. (8.22)

The Xreg part is obtained by the substitution v → vreg into X′.
Assume that we develop a perturbation theory for calculating of the
correlation functions (8.20). To do this in the language of functional
integrals we must expand the integrand in (8.20) in powers of the cou-

pling parameter in front of the coupling terms in << Θ
(2)
Φren >>. In

this expansion all the powers of coupling terms from both |Xreg|2 and
<< |Xsing|2 >> would be present. Assume that somehow this ex-
pansion is renormalizable. If scaling is as usual also assumed it means
that effectively all the most singular terms in the limit (k, f)→∞ in
the expansion would have the same scaling exponents that would not
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increase with the increase of n. In the above sense the functionals
|Xreg|2 and << |Xsing|2 >> themselves can be considered as scale
invariant functionals. In other words when most contributing veloc-
ity field realizations are considered the scaling transformations (7.1)
should generate an appropriate scaling transformation of |Xreg|2 and
<< |Xsing|2 >>, i.e.:

[|Xreg|2] = ereg(z)

and
[<< |Xsing|2 >>] = esing(z) (8.23)

The assumption of equal contribution will be now simply:

ereg = esing, (8.24)

or again in the language of a hypothetical at this point renormalizable
perturbation expansion the most singular terms in the limit (k, f)→
∞ that would be generated by the coupling from << |Xsing|2 >>
would be not more singular in this limit than the ones generated by
the coupling in |Xreg|2.

In fact this scaling equality seems inevitable. Because if one or an-
other components, regular or singular, has a larger scaling exponent
then by iterative application of scaling the role of the remaining com-
ponent will be scaled out together with its dynamical contribution.
In other words either the regular part of the velocity field would be a
dominant contribution to the velocity correlation functions of all or-
ders or on the contrary the singular fractal component will dominate
in all orders of the correlation functions. Neither option is satisfac-
tory. The first one would mean that there is no intermittency in all
orders. The second one would mean that the fractal component is
actually the only one that matters even for the pair correlations func-
tion (and for the K41 spectrum in consequence). But we know that
the velocity field is nearly Gaussian as far as the second order two
point correlation function or equivalently the second order structure
function are concerned. The equality of contributions in the scaling
sense is the only viable option. The regular and singular compo-
nents of turbulence must be in a certain dynamical equilibrium with
each other. The quasi-Gaussian component v(r, t)reg itself should be
rather seen as generated by the fractal component v(r, t)sing. Such
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in fact is the only logical interpretation of (8.17). Indeed, v(r, t)sing
has by definition the most of vorticity, vorticity generation and other
velocity derivatives dependent quantities that are in Fourier space
are defining the high wavenumbers activity. And by the analogue of
Bio-Savart induction theorem this vorticity field creates a flow field
around it in the whole domain (see the discussion in Section1 and
footnote 39 in Section 5).

As far as the singular part dependent contributions it will be
assumed that sub-ensemble ¡¡ ¿¿ averaging is equivalent to the space
averaging, i.e., effectively to the smearing of the fractal sub-domain
over the whole 3D space. Hence for instance we assume:

<< |Xsing|2 >>= limV→∞V
−1

∫
dVF |Xsing|2, (8.25)

where dVF = dDF r in (8.25) is a differential of a fractal ”volume” as
was introduced in (5.6) and (5.8), and similarly for all other v(r, t)sing
dependent quantities. What is important (and obvious) that the av-
eraging (8.25) results in smearing of the dynamical action v(r, t)sing
over the total flow domain that results in a scaling factor that tends
to zero in the limit of high wavenumbers. This is the best to under-
stand using a discrete description. The vanishing volume sub-domain
that we associate with a fractal in a discrete description of Section
4 corresponds to a vanishingly small, by comparison with the total,
number of points on a lattice. In Fourier space this would correspond
also to a reduction of the number of points on the inverse lattice: the
clusters scale on the inverse lattice would grow in correspondence
with reduction of clusters scale in physical space. If for 3D inverse
lattice, as well as the physical space lattice the number of grid points
is ∝ kDd , the fractal with physical space dimension DF is defined by a

reduced number of points ∝ kDFd = kD−µd . This scaling reduction is
very important in the first place as it tells us that the actual number
of degrees of freedom of the velocity field is less than would be for
the total phase volume k3

d (see the discussion in Sections 3 and 4). In
terms of v(r, t)reg it means effectively the reduction of the non-linear
coupling λ2 in the functional (8.22). It must be reminded that it
is hierarchical Beltramization of the flow that is the genuine reason
for the nonlinear coupling reduction and the subsequent formation
of the BCC fractal itself. However in the mean field approximation
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this does not play a direct role.
It was mentioned before and should be pointed out again that it

follows from the observations of geophysical turbulent flows with gen-
uinely high Reynolds numbers that the probability distributions for
various quantities dominated in Fourier space by high wavenumbers,
such as the velocity field derivatives and vorticity in particular, have
power law algebraic tails for high deviations from the mean values. It
means for instance that the high order velocity field structure func-
tions (5.3) and velocity field derivatives correlation functions do not
have physical meaning. They are divergent in the limit of Re → ∞.
Of course for all finite values of Re they do exist and finite, but
starting from some order they lose physical meaning and just reflect
the algebraic properties of the tails of the probability distribution
functions for large excursions of the fields from their mean values.
As explained in the works of Lovejoy and Schertzer (e.g., Schertzer
and Lovejoy, 1983; Schertzer and Lovejoy, 1985a and Schertzer and
Lovejoy, 1985b; see also Levich, 1987 for simplified analysis) the in-
dication of this happening would be the linear growth of the anoma-
lous scaling exponents with the order n of the structure functions,
i.e. µ(n) ∝ n. 55 Although the algebraic tails for the probabil-
ity distribution functions can be given statistical interpretation it is
my viewpoint that this merely reflects the highly coherent internal
structure of BCC. It seems quite out of place trying to describe such
superbly ordered flows using statistical language of high order corre-
lation functions. But as soon as the mean field approximation was
implemented the issue of high order statistics is not relevant any-
more, because the functional (8.22) depends now only on the regular
component of the velocity field. And in consequence the probabil-
ity distribution functional (8.21) is good only for determination of

55This linear growth is spurious and reflects the non-existence of physically
meaningful high order moments. It should not be confused with the linear growth
of intermittency exponents of FHT model (5.11). Turbulence is not adequately
described by FHT model. In a paper of Sreenivasan and Antonia (1997) it is
argued that the algebraic probability dsitribution functions for turbulent fields,
or as they are also called hyperbolic distributions, are in contradiction with ex-
periment. It is not in my view a proven argument. The true experiment should
be carried out for the Re by far larger than possible in laboratory conditions. On
the other hand the geophysical data is clearly compatible with the algebraic tails.
To attribute this fact to some special properties of geophysical turbulence would
be hard to accept.
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the structure functions of v(r, t)reg and the correlation functions of
the derivatives of v(r, t)reg. But these are all trivial in a way since
v(r, t)reg is by definition quasi-Gaussian. Therefore for instance the
second order structure function (5.3) for n = 2 and the correspond-
ing to it energy spectrum in Fourier space should be K41; no other
result can be true for the quasi-Gaussian approximation as was ex-
plained in the previous Section 6.56 And the higher order structure
and correlation functions should be all just as prescribed by the orig-
inal K41 theory with the intermittency parameters all equal to zero.
Clearly there is no sense in the above mean field approximation as
far as the calculation of the real velocity field high order statistics is
concerned because the latter is dominated by v(r, t)sing component
of the velocity field. As soon as the mean field approximation (8.21)
was made the possibility of obtaining correct high order statistical
expressions for the velocity field were forfeited and in actual fact the
trivial behavior for high order statistics of v(r, t)reg no intermittency
and no coherence, was imposed.

The question then arises what is the sense of accepting an ap-
proximation that cannot furnish anything but the K41 spectrum and
similar quasi-Gaussian results for the rest of the correlation functions
that were assumed from the beginning in the nature of approxima-
tion? The answer to this is that by assuming the K41 spectrum we
may be able to calculate dVF = dDF r, i.e., the volume of the v -
singular sub-domains, which is effectively the fractal dimension DF

that is compatible with the K41 spectrum. In this sense the meaning
of the K41 spectrum becomes totally different from that implied by
K41 theory. Indeed, instead of being the result of homogeneous cas-
cade it becomes a result of the intermittent inhomogeneous nature of
turbulence.

Looking ahead we shall determine that in the ultraviolet limit the
RNG asymptotic scaling solution of RSF model to be compatible with
the K41 spectrum requires a unique renormalization of the coupling
parameter λ in the ultraviolet limit (k, f) → ∞. As was pointed out
before this reduction can be interpreted as the smallness of the sub-
domain where the v(r, t)sing component is located, with the effective

56The energy spectrum is the Fourier transform of < ∆v2 >, as it is the Fourier
transform of the two point velocity correlation function (3.13). The two Fourier
transform obviously coincide.
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volume dVF = dD−µr. In the mean field approximation the action
of v(r, t)sing is smeared over the whole flow while this flow is itself
generated by v(r, t)sing . From now on there is only v(r, t)reg left and
it is present in the whole flow domain. The question one asks then
is how many independent velocity harmonics, or degrees of freedom
it possesses in conjugate Fourier space. Apparently it is the same as
the one for the incipient basic v(r, t)sing and this is ∝ kDFd = kD−µd ,
as was discussed previously. And this is exactly the scaling reduction
factor k−µ that we expect to appear in front of the renormalized
coupling in the functional (8.22).57 Effectively it can be interpreted
as a reduction of the square of the book keeping parameter λ2 (see
(7.11) for the definition in RSF) in front of the nonlinear coupling
terms in (8.22). Naturally this renormalization must appear explicitly
as a result of a proper RNG asymptotic analysis implemented for
the functional (8.22). However, we can push further this qualitative
reasoning even without doing a proper analysis. Indeed, we know
that from the basic scaling properties the effective dimension of the
RSF is (D − y). It means that we should have λ2 renormalized as
follows:

λ2ren → λ2k(D−y−µ) = λ2k(DF−y). (8.26)

We have now two unknown constants to determine, y and µ. But
actually it is y and since it is the dynamical exponent z that appears
in the scaling analysis. It was defined previously in (7.22) and before
since the eddy viscosity concept was first introduced in (3.33). The
renormalization of viscosity plays central role in theories (and prac-
tice) of turbulence and the eddy viscosity definition and properties
should be continuously reminded.

In the framework of K41 theory z = 2/3 from a type of dimen-
sional considerations that exclude the possibility of dependence on the
integral scale L = k−1

0 . It was assumed above that the energy spec-
trum of v(r, t)reg is indeed K41 as a concomitant of its quasi-Gaussian
nature. Then for RSF model the general relation that connects y, z
and the spectrum exponent [E(k)] is (7.27). Choosing [E(k)] = −5/3

57This is a subtle point because one can expect that the nonlinear coupling
generates new harmonics. But the meaning of the whole procedure is that in the
accepted approximation the remaining effect of nonlinear coupling is quasi linear
and this is a collorary of the scaling assumption (8.24).
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and formally defining:
z = 2/3 + µ/3 (8.27)

we arrive at the relation:

y = D − µ/3. (8.28)

What it shows is that generally the K41 spectrum can be realized for
RSF model even if µ 6= 0 and z 6= 2/3 if y and z are appropriately
related by (8.27) and.(8.28). In Section 6 the infrared RNG perturba-
tion analysis and the usual renormalized perturbation theories that
all explicitly or implicitly assume that only local in k-space interac-
tions (7.29) play a dynamical role we were driven by the subsequent
mathematics to inevitable µ = 0 and z = 2/3. But this was a result
of by far more stringent assumptions equivalent to the assumption
of locality of interactions (7.29).58 The locality condition precludes
any dependence on the infrared cutoff k0 = L−1. But if z 6= 2/3 it
follows from dimensional considerations that f under a scaling trans-
formation behaves as k2/3+µ/3(L)µ/3. The K41 spectrum assumption
[E(k)] = −5/3 does not by itself impose the assumption of locality
(7.29) as far as the frequency dependence is concerned. The interac-
tion can be local in k-space but non-local in (k,f )-space.

Now we go back to the scaling relation (7.24). As long as the
exponent z is not defined it can be safely used since this is just a
scaling property of RSF model, a particular one from the general
scale invariant transformations (7.1), independent of the perturbation
analysis. Whether we are considering the differential equations or the
functional integral representation the scaling relations remain valid
and the same. It is only a change of sign for the exponents that is
convenient to make since in the following formal analysis we shall
be moving with the iterative rescaling into the ultraviolet direction
(k, f) → ∞, instead of the infrared direction (k, f) → 0. With this
comment in mind and substituting for z and y respectively (8.27) and
(8.28) we arrive at the following result for the coupling parameter
reduction:

λren → λk−µ/3. (8.29)

58The emphasis on equivalent should be noted because infrared RNG in Section
7 formally takes the account of distant interaction in k-spaceas well. But it is an
illusion since eventually their contribution turns out to be exactly the same as if
from the start it would be assumed that only local interactions are contributing.
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We are left with the determination of one parameter µ. This cannot
be done from purely qualitative considerations and require a proper
RNG perturbation theory analysis.

At this point we will depart from the formalism of functional
integrals since they have no advantages for the specific calculation
of µ, although all the calculations that will be made below can be
made of course directly in the framework of the functional formulation
(8.21).

Let us formulate equations for v(r, t)reg such that would lead to
the functional integral representation (8.19)-(8.21) in the same way
that the Navier-Stokes equations for RSF (7.6) led to the functional
integral formulation (8.16). Consider the following model equations:

vreg,i = Ξreg,iG(k, f)−

−(iλ0/2)Greg(k, f)

∫
dDqdf′ηijs(k, f; q, f

′)vreg,j(q, f
′)vreg,s(k-q, f-f ’)+

+
∑
n

O(λn>1), (8.30)

where:
Greg(k, f) = {−if + νk2 +

∑
(k, f)}−1 (8.31)

and ηijs(k, f; q, f
′) is a coupling function that is all unknown to us

but its scaling properties. Only the latter will be important in the
calculations to follow. Thus we write:

ηijs = Pijs(1 + α);

[α] = 0; [Pijs] = 1, (8.32)

where Pijs is the usual projection operator (7.8) and the choice of
ηijs is made conveniently to satisfy the divergence free condition for
v(r, t)reg , i.e., in Fourier space: k · v(k)reg=0. But let us continue
defining the different terms in the model equations (8.30). It should
be pointed out that in fact there is a lot of arbitrariness allowed
in (8.30). Except from the scaling relation (8.23) we know nothing
about << |Xsing|2 >>. We rely on the assumption that for the
determination of certain particular scaling properties nothing else
is required. To be consistent we should assume that any (almost)
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expression can be added to either the functional << |Xsing|2 >>
or the model equations (8.30) as long as the scaling properties are
preserved. In this line of thinking we added an eddy viscosity term
Σ(k, f) in the Green function (8.31). We assume hence that:

[Σ(k, f)] = [f] = [kz] = z;

z = 2/3 + µ/3, (8.33)

where z as before in Section 7 is a dynamical scaling exponent that
will have to be determined. The value z = 2/3 as is usual corresponds
to K41.

The
∑
O(λn>1 terms can be any higher order expansion in pow-

ers of the velocity field and it’s (nine) derivatives, but such that no
term generates higher order nonlinearities in (8.30) than the usual
quadratic nonlinear term. It should be considered however that the
perturbation expansion of the quadratic nonlinearity itself will gen-
erate all higher powers of nonlinearities and in this sense

∑
nO

n>1

can be safely disregarded from now on. Taking into account all the
previous assumptions it is clear now that the functional integral rep-
resentation (8.19) (8.24) would correspond to the model Eqs. (8.30).
As far as the forcing term Ξreg is concerned then again, since we are
only after the scaling exponents, it can be chosen as coinciding with
RSF forcing Fi defined by (7.9). Now we will develop the perturba-
tion theory for the Eqs. (8.30) similar to what was done for the RSF
model but in the opposite asymptotically ultraviolet limit (k, f)→∞.

As in (7.14) let us consider a shell in k-space:

k0 < q < k0e
l, (8.34)

where instead of starting from the ultraviolet cutoff kd as in Section
7 we start now from the ”infrared” cutoff k0 and move up in k-space.
As before for the infrared RNG limit we split the coupling term in
(8.35) into two parts (from now on we omit the subscript reg ):

Ji{v} = J>i {v}+ J<i {v}, (8.36)

where now we using some symbolic designations (compare with the
definition (7.16) for the infrared asymptotic limit):

J<i {v} = (i/2)λGren(k, f)×
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×
∫ +∞

−∞
df′

∫ k0e
l

k0

dDqη(k, f; q, f′)v(q, f′)v(k-q, f− f′) =

= (i/2)λG

∫ <

ηv(q, f′)v(k-q, f-f ’). (8.37)

We shall go on simplifying (8.37). Indeed, since only the scaling
properties are sought why to continue with the unknown, except for
its scaling exponent, vertex and not deal just with the linear in k
vertex P (k) as in the Navier-Stokes equations? By virtue of (8.32)
this should not matter as far as the scaling exponents are concerned.
And the same should be true for the self-energy part Σ(k, f; q, f′)
which we shall substitute by the simplest scaling form:

Σ→ kz = k2/3+µ/3;

z = 2/3 + µ/3. (8.38)

We iterate the part of the coupling J<i {v} in powers of λ, leaving the
remaining part of the coupling term J>i {v} untouched. The result
of iteration is then averaged over the part of the random forcing F<

from the shell while assuming that F> is statistically independent
of F<, by virtue of being Gaussian, < F 2n >=< F 2 >n, so that
< F> >F

<

= F>, < F< >F
<

= 0 and < v >F
<

= v>; exactly as in
Section 6 but in reverse. The iteration and averaging then leads to
the following:

v>(k > k0e
l, f) = GF>(k > k0e

l, f)+

+(−iλ/2)GP

∫ <

l

v(q, f′ <)v(k-q, f-f′) >F
<

+

∞∑
i=1

(−iλ/2)n+1v(n)+

+Q>{v>}, (8.39)

where we omitted a number of superscripts and subscripts for the sake
of simplicity as they are not important at all for the determination
of the scaling properties that we are after. As with the infrared
treatment of the previous section the iteration generates all higher
order nonlinearities in powers of v> in the equation (8.39) that are
denoted now as Q>{v>}. But the higher order nonlinearities can be
shown to be all irrelevant in the RNG analysis which becomes clear
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from considerations similar to the infrared RNG and for which we
refer to Levich (1987). By careful reversing ¡ and ¿ superscripts in
(7.18)-(7.20) we reverse the procedure from being true in infrared
asymptotic limit (k, f) → 0 to that in ultraviolet (k, f) → ∞. Hence
we obtain instead of (7.18):

v(n) =

∫ <

n

{P (k.....P (k−
n−1∑
i=1

q(i))}×

×{G(k, f)....G(k−
n−1∑
i=1

q(i), f−
n−1∑
i=1

)} < {(q, f(1)).....v(q(n), f(n))×

×v(k-q, f-f′).....v(k−
n−1∑
i=1

q(i), f−
∑

f(i))} >F
<

=

=

∫ <

n

Ψ(q(1)......q(n), f(1).....f(n))δ(

n−1∑
i=1

q(i))δ(

n−1∑
i=1

f(i))×

×{P (k)....P (k−
n−1∑
i=1

q(i))}{G(k, f)....G(k−
n−1∑
i=1

q(i), f−
n−1∑
(i)

f(i))}×

×v>(k, f), (8.40)

where:

Ψ(q(1).....q(n), f(1))δ(

n−1∑
i=1

q(i))δ(

n−1∑
i=1

f(i) =< v(q, f)....v(q(n), f(n) >F
<

;

(8.41)∫ <

n

=

∫ n∏
i=1

dq(n)df(n)

and in the zeroth order by reversing the operations ¡ and ¿ instead of
(7.20) we have:

v>(k > k0e
l, f) = GF>(k > k0e

l, f). (8.42)

From now on the RNG procedure is very different from the one in
Section 6 because we are concerned with the opposite ultraviolet limit
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and it is therefore the internal wavenumbers q(n) << k and where
appropriate should be set to zero to the leading order of k0/k. Usu-
ally it would be the next step of the RNG perturbation expansion to
factorize < v(q, f)....v(q(n), f(n)) >F

<

as a product of the pair cor-
relation functions using the zeroth approximation (8.42). But this
would only cloud the picture in this case. Let us push the scal-
ing reasoning one step further. Namely just consider the fact that
Ψ(q(1)....q(n), f(1).....f(n)) is a scaling homogeneous function so that:

Ψ(q(1).....q(n), f(1)....f(n)) =

= Ψ{(q(1)....q(n), κ1(q(1)....q(n))f(1)...q(n)).....κn(q(1)....q(n))f(n)}
(8.43)

and:

[κn(q(1)....q(n)] = −z. (8.44)

It is now not difficult to realize that to the leading order in powers
of k0/k:

v(n) = v
(0)
(0) +O(k0/k) =

∫ <

n

Ψ(q(1)....q(n), f(1)....f(n))×

×δ(
n−1∑
i=1

q(i))δ(

n−1∑
i=1

f(i)){P (k}n{G(k, f)}nv>(k, f) +O(k0/k). (8.45)

Indeed, we have to pass to the new variables of integration πi =
κi(q

(1)....q(n))f(i) and assuming the integration over them is bounded

expand G and P in powers of q(i)/k and f(i)/f ∝ qz/kz.
Considering now carefully the expression, which is (8.39) with no

irrelevant at this point Q>{v>} and to the leading order in powers
of k0/k:

v>(k > k0e
l, f) = GF>(k > k0e

l, f)+

+(−iλ/2)GP

∫ <

l

< v(q, f′)v(k, f) >F
<

+

∞∑
n=1

(−iλ/2)n+1v
(n)
(0) . (8.46)

Inspecting carefully the r.h.s. of (8.46) one can observe, in conjunc-

tion with the definition of v
(n)
(0) from (8.45) and using the zeroth order
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approximation (8.42) for the second term in (8.46), that it is a ge-
ometric progression and can be summed up to all orders with the
result (Levich, 1980 and Levich, 1987):59

v>(k > k0e
l, f) = Gren

′
F>i , (8.47)

where:

Gren
′

=< {−if− kz + (i/3)λ(k · u)}−1 >F
<

= Gren{f− λ/3(k · u)},
(8.48)

where Gren is given by (8.31) with the self-energy term (8.33) and:

u = u(l) =

∫ <

k0

G(q, f′)F<(q, f′). (8.49)

The last can be interpreted as a sweeping velocity of large scale ve-
locity harmonics that we are trying to take account for shell by shell
in k-space. Fairly remarkably all the leading perturbation expansion
terms result in a peculiar renormalization of the Green function that
must be analyzed. In the first place it is necessary to compare (8.48)
with (7.21) to see a profound difference between the modifications of
the self-energy parts in the Green functions for two different asymp-
totic limits, (k, f) → 0 and (k, f) → ∞.60 While in the former case
the corrections to Σ were all just a renormalization of the νk2 vis-
cous term in the latter, to all orders of the leading singularities in
the ultraviolet limit, the correction is a shift in f, it is not dissipative.
The meaning of u=u(l) is clear enough as the largest scales eddies
velocity that from the dimensional consideartions is generally of or-
der L1/3.61 It looks like the whole renormalization is the frequency
shift by the amount corresponding to convection of smaller eddies by
the largest ones. But this is not entirely correct.q Because u = u(l)

59Actually the terms proportional to odd powers of λ terms are zero after
the averaging, but the summation should be done inside the averaging operator

<>F
<

.
60More precisely from symmetry considerations the summation of the leading

terms in the geometric progression should be Gren{f − λ/3(k · u)} + Gren{f +
λ/3(k · u)}/2 but this does not change anything.

61The parameter l is arbitrary. But usually it is chosen infinitesimal. To avoid
confusion in this case it should be understood that u(ml) is the largest scale
velocity after many iterations of the same steps m >> 1. Or alternatively one
keeps l small but finite.
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and because of this l-dependence after m → ∞ iterations becomes a
function of k.

This is not the end of the story because we have to consider the
higher order terms Q>{v>}. Without repeating cumbersome calcu-
lations it should be clear that exactly as we were able to extract the
leading singularities and sum them up to all orders into the renor-
malized Green function in front of the bare forcing F>i the same can
be done with the whole nonlinear term:

P

∫ >

v>(k-q, f-f ’)v>(q, f) (8.50)

substituting F>i in (8.47). Finally the equation for v>(k, f) will look
as follows:

v>(k > k0e
l, f) = Gren

′
F>i +

+PGren
′
∫ >

v>(k-q, f-f ’)v>(q, f ’) +Q′{v>}, (8.51)

where Q′{v>} is the sum of all higher orders nonlinearities in powers
of v> and k0/k that were not accounted for in the summation. So the
first step of RNG perturbation theory was achieved and the resulting
renormalized equations remain invariant to all orders in the coupling
parameter and to leading order k0/k with renormalized Green func-
tion (8.48), but in different Fourier space span. The next step of
RNG is rescaling to return to the previous k-space span k0 < k <∞.
This is done like in Section 6 (step 3), but reversing the direction
in k-space and substituting the lowest wavenumber infrared cutoff k0

instead of ultraviolet cutoff kd. We rescale as follows:

k′ = ke−l, f′ = fe−zl, (8.52)

so that to return to the original span in Fourier space k0 < k′ <
∞. Now it is convenient to redefine again k′ = k and f′ = f but
remembering that both are the rescaled values. While doing the
rescaling in (8.51) we keep the coefficient in the left side equal to
unity to keep the equation invariant. Then we obtain the following:
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v>(k, f) = Gren
′
(l)F>i (l) + λ(l)PGren

′
(l)

∫ >

k0

v>(k-q), f-f ’)v>(q, f′)+

+Q′{v>; l} (8.53)

where:
λ→ λ(l) = λexp[−{3/2z − 1 + (y −D)/2}l]. (8.54)

The renormalization of λ except for the minus sign in the exponent,
appearing because the rescaling is done in the opposite direction in
k=space,looks exactly the same as in (7.24). But the final result will
be very different. What happens after rescaling in (8.53) is that the
Green function becomes as follows:

Gren
′
(l) =< {i(fezl ± λ(l)(k · u)el + kzezl} >−1 . (8.55)

It is now λ(l) instead of λ in (8.54) because after this is what the
coupling constant becomes after one more iteration of the same steps
of RNG. The preservation of scaling then requires that:

λ(l)el = ezl. (8.56)

Using (8.54) for λ(l) and we obtain the following relation:

−{3/2z − 1 + (y −D)/2}+ 1− z = 0. (8.57)

Using the definition (8.38) for z we obtain:

−(y −D + µ)/2 + 1− 2/3− µ/3 = 0. (8.58)

From (8.28), (8.58) and restoring D = 3 follow the main result of this
section:

µ = 0.5,

DF = 2.5. (8.59)

Let us look explicitly at what happens with the coupling parameter
after many iterations m → ∞. Choosing limm→∞,l→0e

ml = (k/k0),
similarly to what was done before (see the derivation of (5.8) and
(7.28) makes λ an explicit function of k (the logarithmic dependence
on the infrared cutoff k0 is neglected):

λren = λ(ml)→ λ(k) ∝ k−(3/2z−1+(y−D)/2) = k(D−y−µ)/2 =
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= k(DF−y−µ)/2 = k−µ/3 = k−1/6, (8.60)

exactly as was expected above in (8.29). The reduction of the cou-
pling parameter naturally can be interpreted as the reduction of the
interaction vertex P (k) ∝ k:

P (k) ∝ k → P (k)ren ∝ k1−µ/3 = kz = k5/6. (8.61)

This is actually what the eddy viscosity becomes. With reference to
(8.33) we conclude that:

[Σ] = [P (k)ren] = 2/3 + µ/3 = 5/6;

νeddy ∝ k−4/3+µ/3 = k−7/6 (8.62)

and restoring the dimensional scale dependence:

νeddy ∝ k−4/3(kL)µ/3 = k−7/6L1/6. (8.63)

This is in contrast with the K41 eddy viscosity νK41
eddy ∝ k−4/3 de-

fined in (3.34). The real eddy viscosity is much larger than K41
eddy viscosity in the ultraviolet sub-range. Assuming that by the
order of magnitude the scaling can be extended up to kd we obtain
νeddy(kd)/ν

K41
eddy(kd) ≈ Re1/8 →∞. But the new eddy viscosity is not

necessarily the dissipative one, as the renormalized self-energy part
Σ is not. In fact it is compensated by the forcing with the result that
the energy spectrum is K41. What it means is that the renormalized
self-energy (actually frequency) acquires what can be called a prop-
agating part that is dominant as far as the interaction is concerned
but does not lead directly to dissipation. The dissipative part of self-
energy appears as the next lower order term in powers of (kL)−µ/3,
i.e., of order ∼ λrenk(kL)6−µ/3 ∝ k2/3.

It is necessary now to show that all the nonlinear couplings in
(8.51) are also convergent and hence irrelevant. This was done in
Levich (1987) and we refer to this paper for the details. It should be
pointed out that the asymptotic convergence requires bringing non-
universal corrections to the coupling constant. This point we consider
briefly below.

Indeed, the asymptotic theory above was developed with logarith-
mic accuracy. If we look with attention at (8.56) and (8.55) it can be
noticed that the sweeping velocity u(l) defined by (8.49) is considered
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l independent, i.e. [u(l)] = 0. In fact however u(l) ∝ l, for l → 0.
Since after many iterations limm→,l→0ml ≈ lnk/k0 it means that for
the convergence of the RNG perturbation expansion the coupling pa-
rameter and the frequency exponent z, as well as the eddy viscosity
should acquire non-universal logarithmic correction. Since the actual
parameter of expansion is λku/f it should be (Levich, 1987):

λ(k) ∝ (kL)−µ/3(lnk/k0)−1/2,

[f] = 2/3 + µ/3 + ln(lnk/k0)1/2,

νeddy ∝ k2/3(kL)µ/3(lnk/k0)1/2, (8.64)

µ = 0.5.

The non-universal corrections are small but ideologically important
underlining a different origin of the K41 spectrum from the one pos-
tulated in the K41 theory.

The relations (8.64) plus the relation (8.28) constitute the to-
tal solution of the problem as it was posed above. What should be
pointed out immediately is that this solution is not a scaling solu-
tion of the Navier-Stokes equations because it does not satisfy the
scale invariant set of conditions (8.65). This would not be such a
bad thing, since as we know the real intermittent solutions of the
Navier-Stokes equations strictly are not naively scale invariant in the
above sense, if not for the fact that we argued that for vreg there
should be a solution that is due for a quasi-Gaussian field and this
is why the energy spectrum should be K41. And now we conclude
that anyway the dynamical exponent z 6= zK41 = 2/3 and conse-
quently the solution is not scale invariant. So the question is what
was the special reason to believe that the energy spectrum K41 is in
any way special? This is indeed a subtle point and it will be discussed
a number of times. But let us notice the following. The character-
istic time scale that was obtained and is in correspondence with the
eddy viscosity (8.64) in the asymptotic limit, kL → ∞; Re → ∞,
tends to zero by comparison with the K41 characteristic time scale,
∆t(k)/∆tK41(k) ∼ (kL)−1/6 ∼ Re(k)−1/8. Simply in dimensionless
units K = k/kd, while the characteristic eddy ld = k−1

d size turnover

time ∆tK41(kd)→ 1, the time ∆t(kd) ∼ Re−1/8 → 0. In other words
the new time scale has a totally different meaning by comparison
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with the usual eddy turnover time of K41 theory. This is a charac-
teristic time of the nonlocal interactions between the eddies of very
different sizes that is actually a dominant interaction. But this in-
teraction when averaged over a finite time period, bearing always in
mind that Re → ∞, cancels out for certain ”observable” 3D quan-
tities. Apparently the non-local interactions are not dissipative in
nature, as shall be discussed below, and in this sense can be called
virtual (Levich, 1987). In reality the nonlocal effects are of course
observable, but they are confined to a fractal sub-domain whose vol-
ume tends to zero or to high frequency dependent quantities. These
observable effects are in the intermittency effects and structures and
not the properties of the quasi-Gaussian field vreg. It is admittedly
a strange reasoning for classical physics in terms of virtual effects,
but it seems compelling in the asymptotic regime Re → ∞. Further
analysis will be furnished in the next section.

The solution corresponding to (8.64) is of course a scaling one as
far as the Euler equations are concerned, but the smooth matching
with the viscous terms typical for K41 theory is not possible as a
result of the strong nonlocal interactions taking place on virtual time
scales. Nevertheless, for the physical quantities defined in terms of
vreg and averaged over a turnover time scale the matching should
remain smooth as in the K41 theory.

Finally it is necessary to note that except of the above quali-
tative reasoning on the quasi-Gaussian character of vreg it remains
conspicuous that there are no intrinsic indications in the model of
randomly stirred fluid that would single out the choice of the param-
eters y = D − µ/3 and z = 2/3 + µ/3 with the subsequent fixation
of the K41 energy spectrum. This uncertainty bothered the pioneers
of this model and of RNG approach to turbulence from the very
beginning while they considered the infrared RNG limit. Similar un-
certainty remains with the ultraviolet RNG. In fact the only bound
that can be gathered in the procedure considered above the relation
(8.57) connecting the allowed values of the two basic parameters in
the problem y and z and hence defining the whole family of solutions
and the subsequent energy spectra on one hand and the correspond-
ing fractal dimensions on the other. The discussion of this subtle
issue will be continued below in Section 9 and Endnote s.
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9 Dynamical Theory 3: Functional Integral
Analysis and Interpretation of the Results

Let us analyze in more details the results of the present theory
that we shall call for reference NT, a new theory.

9.1 Fractal dimension and the number of independent ve-
locity harmonics.

The Eq. (8.59) shows that the fractal dimension of the sub-
domain with reduced nonlinear coupling is DF = 2.5. This is a
sub-domain that is actually turbulence itself because most probably
all the fluid flow in 3D space is generated by the vorticity field in
this sub-domain. Accordingly the number of Fourier flow harmonics
to describe the flow is:

Nren
mode ≈ (kd/k0)3(kd/k0)−µ = (kd/k0)5/2 = Re15/8, (9.1)

where the definition (2.16) was used. As expected the real number
of independent velocity harmonics is much less than in K41 theory
given by (2.22): Nren

mode << Nmode. Although the above derivations
did not use explicitly the helical nature of the sub-domain with re-
duced nonlinear coupling there is no other conceivable scenario but
BCC to explain it. It is rather the other way around so that it is the
discovery of BCC that allowed the bold assumptions in this section
to be made for derivation of (8.59). Most of the Nmode turbulence ve-
locity harmonics in the ultraviolet range are locked up in the helicity
fluctuations.

9.2 The K41 spectrum in the inertial range.

The reality is that apparently even in the inertial range the energy
spectrum is not exactly K41. This is because of the non-universal log-
arithmic correction (8.64). Even though we chose the K41 spectrum
as a starting ”free solution” the RNG perturbation theory generated
logarithmic corrections.62 Indeed, the corresponding energy spec-
trum is now:

E(k) ∝ k−5/3(lnk/k0)−1/2. (9.2)

62Such logarithmic corrections are typical for RNG developed asymptotically
free ultraviolet solutions in quantum field theories. Here the solution is of course
more complicated since the starting differential equations and the subsequent
functional integral representations are more complicated
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The logarithmic correction can be behind two facts that are quoted
in Mininni et.al. (2008b). The first one is that even when the inertial
range is identified in DNS the energy spectrum there has a slightly
steeper slope than that for −5/3 power law. The second fact is the
value of the constant in front of the K41 spectrum. It decreases
no doubt with the increase of the Reynolds number of the simula-
tions. Clearly from (9.2) it would follow that this ”constant” is in
fact asymptotically Reynolds number dependent. But of course DNS
over a wider range and much higher Reynolds numbers DNS should
be carried out for definitive conclusions.

9.3 The K41 spectrum, inertial range and the buffer zone.

The origin of the K41 spectrum and the inertial range are also
quite different from the K41 theory.63 Apart from the fact that the
K41 spectrum is formed by a different mechanism, actually by a small
sub-domain of intensive vorticity in physical space, the inertial range
in k-space where it is likely to be true at least approximately, is effec-
tively different. Although in the ultraviolet RNG theory developed
above there is no upper cutoff it is clear that there must be a matching
in k-space with the range where the viscous dissipation is dominant.
In the K41 theory the inertial range was (2.21) and actually extended
to kd. However NT indicates that that the inertial range is likely to
be shorter; to be sure for the high values of for which one expects
the inertial range to exist at all. Most of the harmonics are locked
up now in BCC and the number of independent harmonics is:

k′d ∼ kd(k0/kd)
−µ/3 ∼ kdRe−1/8. (9.3)

It should be added that the definition of kd itself is independent of
K41 theory. It just follows from the condition (3.25) that is an exact
consequence of the Navier-Stokes equations and thus remains intact.
But substituting the K41 spectrum into (3.25) and carry out the in-
tegration up to k ≤ kd would be wrong in a way. Because in the
interval k′d < k < kd the energy spectrum is not K41. But it does not
really matter if our attitude to (3.25) is as just defining certain value

63It is remainded that K41 spectrum does not necessarily mean the full K41
theory.
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in the interval of wavenumbers in k-space that are much higher than
the inertial range wavenumbers. In order to preserve the global value
of enstrophy Ω =< ω2 > it is necessary that most of enstrophy and
energy dissipation is located in the part of k-space that is more ultra-
violet than the inertial range. What emerges is the energy spectrum
structure that is more complicated than in the K41 theory. In the
latter the inertial range smoothly merges with the viscous dissipation
range for which the energy spectrum is exponentially decreasing with
k. In the present theory there should be an intermediate buffer zone
connecting the inertial range with the K41 spectrum and the viscous
sub-range k ≥ kd, with the exponentially fast decreasing spectrum,
in which the viscosity effects and the nonlinear coupling are of the
same order.

It should be noted that in the boundary layer (BL) turbulence
the existence of an empirical buffer zone that separates the universal
Prandtl logarithmic mean velocity profile and the viscous sub- range,
all in physical space of course, is well known and fundamental. It
is in the buffer zone where most of vortical CS are generated and
most of energy is dissipated. There is a well known and far reaching
relation between the logarithmic mean velocity profile in physical
space for BL turbulence and the inertial range K41 spectrum in k-
space (e.g., Levich, 1996). It is conjectured that the buffer zone in
k-space has much similar in nature with the buffer zone in physical
space for BL turbulence. I shall return to BL turbulence, the one
most importance in practical applications in the next section. In the
meantime it is suggested that in HIT most of energy dissipation and
enstrophy birth are located not in the K41 part of the spectrum but
in a more ultraviolet part of k-space that I call the buffer zone by
analogy with BL turbulence.

9.4 Analysis of the functional integral representation (8.13)
in the inertial range.

Let us go back to the functional integral representation and look
how the results (8.59)-(8.62) fit in. Consider again the generating
functional (8.22) let us substitute the results (8.59)-(8.62) into it and
try to estimate the contributions of various terms in the sense of
mean field approximation, i.e., approximating the functional in the
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exponent in (8.22) by the mean:

<

∫
dDkdfΦ−1{|X|2+ << |X|2 >>}. (9.4)

In other words we shall assume that (8.59)-(8.62) are the most proba-
ble flow realizations dominant in their contribution to the total func-
tional (8.22). Since the singular contribution is of the same order of
magnitude as the regular one by virtue of (8.24) it is enough to esti-
mate <

∫
dDdfΦ−1|Xreg|2 >. There are three types of terms: bilinear

BL, nonlinear NL and proportional to viscosity V(k) The meaning
of the mean field approximation now would be that we consider only
the most contributing velocity field realizations that we assume to be
the ones resulting in (8.59)-(8.62). The bilinear terms are:

BL(k) =

∫ k

k0

dDdfΦ−1f2 < v(k, f)|2 >, (9.5)

where the integration is in a slice of k-space in the inertial range with
k →∞. The nonlinear terms are (with tensor indices and irrelevant
for the scaling analysis constant factors omitted):

NL(k) =

=

∫ k

k0

dDdfΦ−1[λren]2(k)P (k)2 < |
∫ k

k0

dDdf ’v(k-q, f-f ’v(q, f ’|2 >

(9.6)
And the viscous terms are:

V = ν2|intkk0k
4Φ−1 < |v(k, f)|2 > dDdf. (9.7)

The cross terms in the integrand in the functional (8.22) are ne-
glected. Their contribution can be easily shown to be of the same
order as from the nonlinear terms that were picked up for the anal-
ysis. Now we must estimate what are the scaling powers of BL and
NL , i.e. to calculate [BL(k)] and [NL(k)]. The calculation should be
done for two cases, the K41 theory and the New Theory (NT). Let
us start from BL. The powers counting yields:

[BL(k)] =

∫ k

k0

dDdfΦ−1f2 < |v(k, f|2 >] =
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= D + [f] + [Φ−1] + 2[f] + [|v(k, f)|2] = 0, (9.8)

where the following relations were used:

[Φ−1] = D − µ/3;

[f] = 2/3 + µ/3; (9.9)

[< |v(k, f)|2 >] = [E(k, f)] + [δ(k] + δ(f] = [E(k)]− [f]− 2−D− [f] =

= −5/3− (D + 2)− 2[f].

It is noticed that as it should be, [BL(k)] = 0, for both K41 theory,
i.e. for µ = 0 and for any µ 6= 0. The meaning of this analysis is that
the contribution of turbulent realizations corresponding to the K41
spectrum is indeed satisfactory as far as the BL terms are concerned
since with a logarithmic accuracy it does not depend on any of the
cutoffs, either k0 or kd. But since BL correspond to the linear term
in the Navier-Stokes equations this result is trivial. The NL(k) terms
are the ones that are important.

The situation is different with NL(k). The calculation of [NL(k)]
of course cannot be carried out exactly because it would be equivalent
in a sense to the calculation of the functional integral itself. In reality
this can be done only by RNG perturbation expansion that is quite
equivalent to the perturbative solution of the model equations (8.30).
But with certain assumptions an estimate can be done for NL(k) as
it is defined in (9.6). Let us rewrite the (9.6) by doing the reverse
Fourier transformation of the nonlinear part of X ′i(k, f) in (8.14) in
the following equivalent manner:

NL(k) =

∫ k

k0

Φ(k)−1dD
∫
< J(r, 0)J(r′, t) > eik·(r-r’dDrdDr′dt =

=

∫
Φ(k)−1dD

∫
< J(0, 0)J(R, t) > eik·RdDrdDr′dt, (9.10)

where the use of homogeneity allows the change of integration vari-
ables r→ R = r-r’, (−∞ < R < r) and J = J{v} is the correspond-
ing nonlinear terms in physical space, e.g., in (8.2). Let us consider
the ultraviolet limit k →∞ while keeping k ·R ∼ 1. Let us make an
assumption concerning the correlator: < J(0, 0) · J(R, t) >. First of
all we omit the pressure gradient potential part of the coupling and
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leave only the solenoidal part, J′ = v × ω, since this is the impor-
tant one for forming turbulence structure and generating vorticity.
The second and more substantial assumption is that the correlator
< J′(0, 0) · J′(R, t) > can be factorized as:

< J(0, 0) · J(R, t) >=

=< v(0, 0) · v(R, t >< ω(R, t) >< sinα(0)sinα(R, t) > . (9.11)

This is an implicit assumption that the fastest time correlations cre-
ated by the nonlinear coupling are the phase correlations and they
control and balance the nonlinear interactions.

It is noted that the correlator < J′(0, 0) · J′(R, t) > has relation
with the correlator describing the fluctuations of helicity φ(rφ(r + δr
introduced in (5.18). Indeed, if the helicity correlators are anoma-
lously large at small separation scales due to the alignment of v and ω
in helical sub-domains this would mean the corresponding reduction
of < J(0, 0) ·J(R, t) > in these sub-domains due to the alignment. In
difference to the local in physical space interrelation between v × ω
and v·Ω in the Navier-Stokes equations in the functional integral rep-
resentation the global, non-local nature of helicity fluctuations enters
naturally.

The separation of the amplitudes of velocity and vorticity in (9.11)
is still possible because the velocity field is primarily determined by
the large scales of order L and the vorticity field is primarily de-
termined by the small scales ld and these two are uncoupled except
from the helicity related phase coherence that is accounted for by the
correlator < sinα(0)sinα(R, t >.

With all the assumptions made we can now estimate the scaling
power of NL(k). We have:

[NL(k)] = [Φ−1]+D+[< v(0, 0) ·v(R, t) >]+[< ω(0, 0) ·ω(R, t) >]+

+[< sinα(0)sinα(R, t) >]− 2D − [dt] + [eik·R] =

= (y −D)− [dt] + [< v(0, 0) · v(R, t) >] + [< ω(0, 0) · ω(R, t) >]+

+[< sinα(0)sinα(R, t) >], (9.12)

where we took into account that[eik·R] = 0 and [dDr] = [dDR] =
−D. Let us consider the remaining terms above term by term. Con-
sidering the expression (3.14) for the velocity correlation function

Concepts of Physics, Vol. VI, No. 3 (2009) 375



Eugene Levich

corresponding to the K41 spectrum it is clear that the leading con-
tribution would be O(L2/3) and hence [< v(0, 0) · v(R, t) >] = 0to
the leading order in powers of the Reynolds number.64 At the same
time [< ω(0, 0) · ω(R, t) >] = [R−4/3 = 4/3.

Consider first what happens if the K41 theory is accepted. Then
apparently µ = 0, the correlation time ∆tK41 scales as [dt] = −2/3
and y = D. As far as the K41 theory is concerned there is no phase
coherence, there are no BCC and the Pdf(v ·ω/|v||ω|) is flat. This is
to say that [sinα(0)sinα(R, t) >] = 0 for the time interval t < ∆tK41

and hence:
[< J′(0, 0) · J′(R, t) >K41] =

= [< v(0, 0) · v(R, t) >] + [< ω(0, 0) · ω(R, t) >] = 4/3. (9.13)

This can be interpreted as applying the quasi-Gaussian assumption
to the basic correlator < J′(0, 0) · J′(R, t) >.

Summing up together all the estimates above we arrive at the
following:

[NL(k)]K41 = 2/3, (9.14)

or equivalently:

NL(k)K41 ∼ (L/l)2/3 = Re(k)1/2 →∞. (9.15)

Clearly this is not a satisfactory result. In the language of the pertur-
bation theories when the functional integral is calculated by expan-
sion in powers of NL(k) the (9.15) would mean an unrenormalizable
perturbation theory with each next order term growing as integer
powers of large scale or the Reynolds number, i.e., like (L2/3)n.r

But in NT the situation is totally different. In this case we have
from (9.9) y = D− µ/3 and [dt] = −2/3− µ/3. And now we suggest
that due to the helicity phase and spatial coherence:

< sinα(0)sinα(R, t) >= λren2(R) ∝ λren2(k) ∝ k−2µ/3 ∝ Re(k)−µ/2,
(9.16)

with λren2(k) given by (8.60). Hence it is explicitly asserted here that
the reduction of the coupling constant is a result of helicity coherence

64It is remainded that Re → ∞ and this can if any of the three parameters,
L, νL, or ν are set respectively as tending to ∞ or 0. Therefore, for instance,

O(L2/3) = O(L2/3/l
2/3
d

= O(Re1/2, where the relation (2.16) is used.
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that is growing with the growth of wavenumbers or the corresponding
decreasing of separation scales. In the ultraviolet limit k → ∞ the
helical fluctuations asymptotically tend to form Beltrami cells with
extreme alignment. The subsequent singular factor k−µ/3 in the in-
verse ”temperature” Φ−1 and the same k−µ/3 factor in dt give an
additional factor ∝ k−2/3 ∼ Re(k)−µ/2. Altogether we obtain a nat-

ural coupling reduction factor Re−µ = Re−1/2. It should be pointed
out that the phase coherence (9.16) holds only for a short correla-
tion time determined by the inverse of the typical frequency given
by the scaling exponent (8.62). This frequency and the related eddy
viscosity (8.63) are large by comparison with the K41 typical values,
as was previously discussed. What it means is that the Beltrami like
helical fluctuations of opposite sign exist only on a short time scale
tending to zero in the limit Re → ∞. The fluctuations are virtual
in this sense. As was explained previously (in the Foreword and Sec-
tions 5, 8) the Beltrami cells of opposite sign either live only short
life in much of the volume, or become stable only when their total
volume is a diminutive fraction of the flow domain, asymptotically
a fractal sub-domain and as a compensation the amplitudes of the
velocity and vorticity fields are large (see Endnote s for discussion).
In fact the velocity field inside the fractal BCC can be estimated as:

vsing ∼ L1/6l1/6, (9.17)

instead of vreg ∼ l1/3. Altogether the helicityphase coherence fur-
nishes the required small parameter (kL)−2µ/3 → Re−µ = Re−0.5

that is needed for the convergence of the nonlinear coupling in the
functional integral representation, or equivalently the asymptotic con-
vergence of the RNG perturbation theory developed in Section 7.
This convergence occurs for the unique value of µ = 0.5 as was de-
rived in Section 7. Finally we obtain:

[NL(k)] = [BL(k)] = 0. (9.18)

The results of this sub-section should be seen as to some extent inde-
pendent, mathematically speaking at least, confirmation of the results
of Section 8. It should be noted that all the asymptotic results above
were obtained with logarithmic accuracy and disregard possible cor-
recting factors of order {lnRe}x. Still such factors may be relevant
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and will be discussed below. Let us analyze now the viscous terms
V(k).s

9.5 Energy spectrum in the buffer zone and skewness.

Is there anything that can be said based on NT about the energy
spectrum E(k) in the buffer zone? The point is that it is necessary to
match the solution in the inertial range with the viscous dissipation
range solution. In K41 theory this is an easy thing to do. The K41
eddy viscosity in the inertial range (3.34) is such that it matches
naturally the molecular viscosity at k = kd i.e., K41 spectrum and
the exponent z = 2/3 that corresponds to the eddy viscosity (3.34)
(and of course y = 3), together satisfy the general scaling solution
conditions (7.1). On the other hand the solution (8.62) that was
obtained in Section 8 and has been reconfirmed in the preceding sub-
section 9.4 just now, the same K41 spectrum but z = 2/3+µ/3 = 5/6,
do not satisfy the scaling conditions (7.1). As was pointed out in
Section 8, the solution (8.62) is not really a scaling solution of the
Navier-Stokes equations. At the same time this solution remains of
course a scaling solution of the Euler inviscid equations. And now we
should find a way to match this solution in the inertial range with a
solution in the buffer zone where the viscous terms are of the same
order as the nonlinear coupling. But the matching will not be smooth
and easy now as it was for K41 theory in Section 5 above.

It was asserted in Levich (1987) that E(k) in the buffer zone
should have an excess of energy over what it would have been if the
spectrum was K41 all the way up to kd, as is effectively assumed in
K41 theory. In other words it was asserted that E)k) should have
a flatter than the K41 slope somewhere in this range outside of the
inertial range as it is redefined in (9.3).This can be deduced from the
global matching of contributions from the nonlinear coupling term
with that from the buffer zone and viscous range. Let us show how
one can do this matching directly from the functional integral repre-
sentation.

In accordance with (8.62) the nonlinear coupling generates the
eddy viscosity in excess of the K41 eddy viscosity in the ultraviolet
sub-range in k-space. This eddy viscosity terms should be somehow
matched with the molecular viscosity terms. In particular the av-
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eraged global contribution calculated for typical realizations of tur-
bulence coming from the viscous terms should be the same order
of magnitude, with logarithmic accuracy, that the contribution from
the eddy viscosity terms, or which is the same the contribution from
the nonlinear coupling terms. In the scaling language it means that
[V(k)] = 0. It is tacitly assumed that scaling is still applicable in
the buffer zone and this is of course an assumption. More generally
it can be claimed however that globally V(k > k′d) should be Re in-
dependent to be of the same order as NL. It is suggested that the
characteristic time scale in the buffer zone for the viscous dynamics is
determined by viscosity ν, i.e. ∆t ∼ νk2, which for k ≤ kd is of order
∆t = ∆tK41 ∼ k−2/3 = R2/3, that is the time scale coincident with
the K41 time scale (2.15). The correlations here are trivial between
curlω at two points decaying with time and have nothing to do with
the complex correlations between helicity fluctuations as we analyzed
previously for NL(k). Let us rewrite V(k) similarly to what was done
with NL(k) above as follows:

V(k) = ν2

∫ k

k0

k4Φ−1 < |v(k, f)|2 > dDdf =

= ν2

∫ k

k0

Φ−1(k)dDk

∫
< curlω(0, 0)curl(Rt)eik·RdDrdRdtK41,

(9.19)
where R = r-r’, (−∞ < R < r) and it is assumed that the typical
time of correlations for the correlator < curlω(0, 0)curlω(R, t) > is
the above defined ∆tK41, so that [dtK41] = 2/3. At the same time
the typical correlation time for the nonlinear coupling correlator in
NL(k) in the buffer zone remains the same [dt] = 2/3 + µ/3, since
in physical space we are firmly inside the BCC sub-domain. The
temperature factor is the same for all the terms BL(k), NL(k) and
V(k). Assuming that the integrands in NL(k) and V(k) still can be
approximated by scaling we must equalize the scaling powers for the
both integrands. Also the matching with the assumed [dtK41] = 2/3
in the region k ≤ kd it should be ν ∼ k−4/3. It is reminded that for

k ≈ kd the relation ν ∼ k
−4/3
d is a definition of kd given by (3.30)

independently of what is actually the spectrum in this region. After
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some power counting we obtain now the following:

[< curlω(0, 0) · curlω(R, t) >] = 10/3 + µ/3 = 10/3 + 1/6 = 7/2.
(9.20)

The exponent 10/3 is the K41 exponent for the correlator

< curlω(0, 0) · curlω(R, t) >

that can be also revealingly written as follows:

S(R) =< curlω(0, 0) · curlω(R, t) >=

= ∆2 < v(0, 0) · v(R, t) >∝ R−10/3−µ/3 = R−7/2. (9.21)

The correction µ/3 = 1/6 is a correction due to Beltramization. In
consequence the correction in (9.20) implies a correction in the ve-
locity correlation function and subsequently in the energy spectrum
in the buffer zone.

The spectrum must have an excess of energy in the buffer zone by
comparison with K41 power law. Let us consider this in detail. The
little singular correction to the correlator (9.21) as compared with
K41 theory means by continuity that the statistical moment at one
point, actually at R ≈ ld → 0, would also have a singular correction
to the K41, i.e., Reynolds dependent factor as follows:

S(ld)/S(ld)
K41 ≈ S(0)/S(0)K41 =

=< (curlω)2 > / < curlω2 >K41∝ Reµ/4. (9.22)

But using the relation (3.32) we obtain for the dimensionless skew-
ness:

S = − < (curlω)2 > / < (curlω)2 >K41=

= ν

∫
k4E(k)dk/(

∫
k2E(k)dk)3/2 ∝ Re1/8 = Re0.125. (9.23)

This may be possible for instance if E(k) is anomalous in the buffer
zone with a flatter slope of E(k) by comparison with the K41 spec-
trum. If scaling is assumed in the buffer zone then the slope exponent
should be −5/3 + 1/6 = −3/2. And thus the spectrum would be:

E(k)BZ ∝ k−3/2. (9.24)
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Comparison indicates that this spectrum fits well the DNS data in
Fig. 14 from Mininni, et. al. (2008). It should be cautioned though
that the DNS was still carried out for relatively low Reynolds num-
bers.

Note that ν < ω2 >=< ε > and despite the singular corrections
in (9.20)– vz (9.23) it of course remains that:

< ω2 >= limR→0,t→0∆ < v(0, 0) · v(R, t) >∝ L/ld ≈ Re3/4. (9.25)

The experiment and numerical data indicate that skewness is not
constant as is implied by the K41 theory, but a slowly growing func-
tion of the Reynolds number.t The existing data does not allow how-
ever a precise determination of the exponent. The one in (9.23) is
small enough to be compatible with the existing data, but DNS with
much higher values of Re than the ones considered in contemporary
studies are needed for conclusive comparison.

Skewness by the relations (1.20), (3.27), (3.28) and (3.32) is con-
nected directly with the Lagrangian vorticity stretching and enstro-
phy generation. Since skewness is determined fully by the processes
in the buffer zone of k-space it means that the vorticity stretching
occurs predominantly in the buffer zone as well and anomalously in-
tensive as compared with what it would have been if turbulence was
adequately described by the K41 theory. In physical space all active
dynamics occurs in the midst of BCC which itself is formed as a
result of the most basic processes in turbulence dynamics: vorticity
stretching and subsequent breaks and reconnections, most probably
at the fractal interfaces of helical fluctuations, by viscous effects.

Another quantity with which skewness is connected is flatness of
the velocity field which in its urn in HIT is the normalized mean
square measure of fluctuations of the energy dissipation rate:

δ =< ε2 > / < ε >2=< (∂xvx)4 > / < (∂xvx)2 >2 . (9.26)

A rigorous Betchov inequality connects the values of S and δ as fol-
lows:

S ≤ (2
√

21)δ1/2. (9.27)

Together the relations (5.2) and (9.23)-(9.27) result in the following
lower bound for the intermittency exponent of the energy dissipation
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Figure 14: Shows the DNS energy spectrum from the cited work of
Mininni, et.al. (2008a). The spectrum is compensated by k5/3 factor
in the upper figure and by k4/3 factor in the lower. In the lower
figure the wavenumber is normalized by the viscous wavenumber that
is designated here Kη, which is the same as kd defined by relation
(3.31), i.e., kη = kd. It can be seen from the upper figure that the
K41 spectrum is present approximately and in a very short range of
wavenumbers and then clearly the slope flattens up. However the
compensation by k4/3 in the lower figure is also not perfect. The
spectrum (9.24) would fit better in this post inertial range buffer
zone. The DNS was carried out for a flow with Re ≈ 104 and claimed
good resolution for up and over kη = kd. Although this is not a
sufficiently high value of Re for final conclusions it is still about the
same as in many laboratory experiments. The usually reported K41
spectrum in these experiments looks better than in DNS. But as was
emphasized before measurements in turbulence are extremely difficult
and in particular the spectrum is not directly measured as a rule but is
inferred from related quantities using certain assumptions. Therefore
it well may be that the DNS results may be the ones to favor. The
inset in the upper figure shows the energy transfer flux and seems
constant with good accuracy in both the short inertial range and in
the part of the buffer zone.
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fluctuations (scaling is assumed):

µε ≥ 1/3 ≈ 0.33. (9.28)

This inequality clearly fits well the median experimental data that
usually quotes µε ≈ 0.4, but again the experiment is insufficiently
accurate and will remain such in the foreseeable future. It is likely
that we will have to wait for much more powerful DNS for the final
determination of S and µε. Nevertheless, both the results (9.23) and
(9.28) are realistic and inspires certain optimism.

Summarizing we can state that the prediction of the existence
of the buffer zone in k-space in which the nonlinear coupling is still
essential but at the same time the viscous terms are equally con-
tributing is rewarding. Apparently while in physical space all the
important dynamical processes are taking place primarily in BCC.
Concomitantly in k-space it is in the buffer zone where most of en-
strophy is generated and located and most energy is dissipated. In
this sense if we push the analogy a bit further it can be asserted that
while the inertial range in k-space is in correspondence with the uni-
versal logarithmic profile range in BL turbulence, likewise the buffer
zone in k-space is in relation with the buffer zone of BL turbulence
in physical space. This analogy will be pushed further below where
it will be asserted that the helicity fluctuations and Beltramization
determine the BL turbulence structure as much as they do in HIT.

9.6 Energy spectrum in (k, f)-space.

Although in NT the energy spectrum E(k) remains K41 the full
spectrum E(k, f) is not what it is in K41 theory. Because [f] = 2/3 +
µ/3 and in consequence the general scaling form for the spectrum is:

E(k, f) = C < ε2/3 > k−7/3−µ/3L−µ/3φ(f/ < ε1/3 > k2/3+µ/3Lµ/3 =

= C < ε2/3 > k−5/2L−1/6φ(f/ < ε1/3 > k5/6L1/6 (9.29)

This is instead of:

E(k, f)K41 = C < ε2/3 > k−7/3φ(f/ < ε1/3 > k2/3. (9.30)

Integrating (9.29) over k we obtain:

E(f) ∝ f−9/5. (9.31)
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Measurements of turbulent spectra for the last half century have been
so confusing and imprecise that it would be naive to compare (9.31)
with experiment. It suffices to say that it is definitely compatible
with the available experimental data.65 But this is not enough to
feel satisfied at this time.

9.7 High order velocity field structure functions (5.3).

NT does not provide answers for the intermittency exponents of
the velocity structure functions that are often chosen, probably be-
cause of their relative simplicity, for experimental studies in turbulent
flows and whose anomalous exponents are seen by many in relation
with the multifractal structure (see also Endnote s). On the other
hand the basic intermittency understood as singular corrections to
skewness and flatness factor come out naturally in a quantitative
manner from the theory on a fundamental level as a phenomenon
that is likely to be the property of subviscous buffer zone in Fourier
space while BCC in physical space. In fact the existence of BCC
makes it impossible for intermittency not to exist. On the other hand
the very nature of statistical description through the correlators and
moments of turbulent fields seems limited as was mentioned previ-
ously in Section 5. Indeed, the higher order is the correlation function
or a single space point single time moment of a turbulent quantity
the bigger is the contribution of BCC. The same is true for high
order derivatives of the velocity field since they are all determined by
the high wavenumbers range from the buffer zone. In other words the
high order statistical quantities would just reflect the inner structure

65There is a certain sense of frustration when one sieves through the experimen-
tal data for the energy spectra. The early data was comprehensively reviewed
in Monin and Yaglom (1975). As was emphasized throughout this paper the
experiment in turbulence is extremely difficult. It remains to wait for more com-
putational power to be able to increase the Reynolds numbers of simulations by
at least one order of magnitude. Unfortunately, this is not going to happen soon
since it would mean almost three orders of magnitude increase in computational
requirements (see (2.22)). As far as the frequency spectrum is concerned the long

time discussions are whether the spectrum is f−5/3 or f−2. The arguments seem
to be well resolved if the spectrum (9.31) is accepted with the NT exponent −9/5
lying exactly between the contested exponents −5/3 and −2. For meteorological
analysis of the data see, e. g., comprehensive Radkevitch et al. (2007), Liley et
al.(2008) and Radkevitch et al.(2008).
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of BCC. But BCC consist of completely coherent flow patterns that
most likely are totally unsuitable for statistical description. I conjec-
ture that this is the dynamical reason of algebraic tails for large devi-
ations from the mean values in the probability distribution functions
of turbulent fields that seems to manifest in geophysical turbulent
flows with very high Reynolds numbers (e.g., Schertzer and Lovejoy,
1985a and 1985b; Radkevitch, et.al., 2008).

As was mentioned in Section 5 such algebraic tails were not ob-
served in laboratory experiments or DNS. But all these have been
made for relatively low values of the Reynolds number. Nevertheless,
there is a consistent indication that for high enough orders N > 6 the
exponents of the velocity structure functions become linear functions,
i.e., µν(n) ∝ n. The linear dependence on (generally non-integer) n
would be indeed the only possible for the probability distribution
functions with algebraic tails (see, e.g., Levich, 1987, for a simple
explanation). An approximate value n ≈ 6 may be singled out be-
cause on certain qualitative approximation, it can be suggested that
∆v6/r2 ≈ ε(r) and hence < ∆v6 > /r2 ≈< ε2 >. In other words the
structure function of this order or close to this order is likely to exist
in the limit Re → ∞. But it seems that even this is not the case in
certain atmospheric turbulence situations (Radkevitch, et.al., 2007).

9.8 Non-local versus local interactions: energy transfer in
k-space.

There seems no doubt that in a long range of wavenumbers the
energy transfer in turbulence is constant and substantially local in
k-space, i.e. subject to the triads’ requirement (7.29). DNS indicates
the constant flux range extending through all of the inertial range
and ostensibly the buffer zone (Mininni, et.al., 2008a and 2008b). If
the energy flux would not be constant the whole scaling approach to
developed turbulence would be in doubt.

On the other hand the very fact of appearance of the L = k−1
0

dependence in the characteristic parameters (8.64) leaves no doubt
that the interactions in turbulence are predominantly non-local. In
fact in a qualitative way it can be said that the eddies with a scale l
are coupled most strongly with the eddies having the velocity defined
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by (9.17) and scales ∼ l1−µ/3Lµ/3 = l5/6L1/6.66 From the viewpoint
of Fourier space BCC is a high wavenumber cluster. In physical
space, judging on Fig. 1 and Fig. 3, it consists of asymmetric
helical vortices having laterally all sizes from the inertial range and
smaller and stretched up to a fraction of L in one direction. Thus the
phase coherence is definitely most important for strongly disparate
scales of motion locked through this coherence with each other.

But the non-local interactions do not mean nonlocal energy trans-
fer, as was commented above. One notion ”phase coherence” resolves
the issue. For the local energy transfer between the velocity har-
monics in k-space to exist it is necessary that the non-local phase
coherence exists as well. The nonlocality is not a correction over the
principle of local energy transfer but a necessary condition for the
local energy transfer to exist (Levich, et.al., 1991). However it is
likely that this statement is correct with logarithmic accuracy and
hence the K41 spectrum is correct only with logarithmic accuracy.
The approach with growing to local in Fourier space energy flux is
slow, as is clearly demonstrated by Mininni, et. al. (2008b).

The detailed analysis will be carried out elsewhere and we con-
fine the present considerations to some general qualitative reasoning.
The point is that if we consider the energy transfer expression in the
model equations (8.30) it would consist of several terms each of them
proportional to Lµ/3 = L1/6 and thus is dominated by the nonlocal
interactions. This is easy to understand from the fact that renormal-
ized eddy viscosity (8.62) is proportional to the same Lµ/3 = L1/6

factor. On the other hand when the energy spectrum is calculated
there is a cancelation of likewise large terms and as a result we obtain
the L independent K41 spectrum. It was suggested in Levich (1987)
that the virtual frequency of nonlocal interactions (8.64) is a prop-
agating mode and not a dissipative one. The helical fluctuations at
all scales live and die during a short time span of correlations defined
above, or stabilize in a diminutive volume corresponding to BCC.
The energy swings forth and back between all the scales in conjunc-
tion with these fluctuations, but all this takes place on a short time
scale. Therefore the systematic energy flux from larger scales to the
smaller ones takes place on the usual scaling time scale dtK41 ∼ k−2/3.

66It is a good place to check that the ”volume” of these eddies scales as the
cube of the scale, propto(l5/6)3 = l5/2, i. e., as an object of dimension DF = 2.5.
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If these assumptions are made than scaling analysis in the spirit of
NT would be indeed compatible with the locality of the energy flux
in k-space. If to approximate the transfer term with the eddy vis-
cosity term and the forcing at the same time then it is clear that
the eddy viscosity term does not lead to a systematic energy trans-
fer and this is why the K41 spectrum is a solution. In other words
the nonlocal interaction is not dissipative but rather propagating and
its single mission is creating phase correlations in helicity fluctuations
(and subsequent intermittency). When averaged over K41 time inter-
val the energy transfer from nonlocal interactions would be tending
to zero. Indeed, averaging over K41 time furnishes a scaling factor
∼ dtnonlocal/dtK41 = dtnonlocal/dtlocal ∝ k−µ/3. Additionally the
coupling constant reduction yields another factor ∝ k−µ/3. Together
they compensate the integral scale L1/3 factor in the expression for
the energy flux transfer that would appear from the direct scaling
analysis of the transfer term that is not shown here. However this
is an asymptotic reduction effect and the ratio of nonlocal and local
energy transfer contributions would most likely tend to zero logarith-
mically slow as a function of Re→∞.u

10 Dynamical Theory 4: BCC in Wall Bounded
Turbulence and Possibility of Turbulence
Control

There is no experimental or numerical data sufficient to develop
quantitative NT for even the simplest wall bounded turbulent flows.
The main conjecture that will be advanced here is that certain prop-
erties that were discussed for HIT remain invariant independently of
the flow geometry. In the first place such feature as BCC and its
fractal dimension. In other words it is conjectured that BCC re-
main the sinews of turbulent flow field whatever is the geometry and
boundary conditions.

There are few solid facts at this time to support this claim. Pri-
marily I rely on the fundamental universality principles in their most
general sense that have guided research in turbulence for the last
one hundred years and common sense. Indeed, the general similar-
ity between the wall turbulence and small scale properties of HIT is
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obvious to anyone. That distance from the wall in many ways plays
the role similar to the inverse wavenumber in HIT in near to dissi-
pation region is also obvious. As the small scales of HIT generate
spontaneously the helicity fluctuations necessary to organize BCC
for the purpose of controlling the nonlinear coupling and subsequent
smooth flow of energy on their way to viscous oblivion, so I conjec-
ture that the wall region does the same in wall bounded flows. The
wall bounded turbulence is of course much more complicated because
while these processes are taking place in physical place they are also
occurring in the conjugate Fourier space. This is confusing and it is
most likely that the Fourier space is not the right one to introduce
in wall bounded flows. In fact the anisotropy of wall bounded flows
allows to use other than Fourier orthogonal sets of eigen functions for
decomposition of the velocity field and extracting the most relevant
and coherent features. Such is the Karhunen-Loeve decomposition
that has been applied extensively for the analysis of turbulent chan-
nel flow and pipe flows (e.g., Sirovich and Zhou, 1994, Rajaee, et.al.,
1994, Webber, et.al., 2002, Duggleby, et.al., 2007). We refer to these
papers for details but just mention that this decomposition is not
as fundamental as Fourier decomposition and is data dependent and
must be carried out on the basis of available experimental or DNS
data. In fact it is a way to sample out the most typical and hope-
fully most important features of the data. It is a general conclusion
of many researchers using this methodology or its modifications and
analyzing DNS and experimental data that near to wall turbulence
has some specific features.

It seems that turbulence in the wall region is dominated by elon-
gated streamwise oriented streamwise vortical structures called the
streaks. The streaks streamwise length Lrolls expressed in the wall
units δ = ν/ν∗ is significant, probably of the order of 1000δ and
longer. The streaks have a peculiar internal structure. First of wall
they carry the dominant part of turbulent field component energy.
This velocity in the streaks strongly favors streamwise direction with
the streamwise velocity component u considerably bigger than the
other two velocity components (see Fig. 18).The roll structures
carry most of the total turbulent energy contained in the fluctuat-
ing part of the velocity field. In this sense they are like the large
eddies in HIT. From time to time over a distance in spanwise direc-
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tion z the streamwise velocity of the streaks changes sign. Roughly
speaking two adjacent streaks are two streamwise counter-flows. The
distance between such two counter-flows is usually quoted in litera-
ture as about wall units, Lstreak ∼ (100 ± 20)δ. But in reality this
streak spacing seems to be growing with the distance from the wall
y+. Whether the streak spacing is function of Reτ is not clear from
the available data. The necessity to have counter-flows is obvious
because the streamwise fluctuating velocity should be close to zero
when averaged over a big enough spatial flow domain.

The streaks themselves apparently consist of smaller structures
that can be likened to counter-rotating rolls. The counter-rotating
rolls seemingly have a dominant vorticity aligned along x streamwise
direction. From time to time a rotating roll vortex changes the ro-
tation sense and becomes counter-roll. This is also obvious since the
total streamwise preferred fluctuating vorticity should also become
zero (nearly) when averaged over a big enough spatial flow domain.
The roll spacing also seems to be growing linearly with the distance
from the wall y+. But it is much smaller than the streak spacing,
of order Lroll ∼ (30 ± 5)δ. There is no reliable data on a possible
dependence on Reτ .

The existence of such streaks with roll structures embedded is
supported by DNS and measurements, but both lacking precision
and definitiveness. Nevertheless, let us consider the Figs. 15 from
Rajaee, et.al. (1995). The authors carried out measurements in wa-
ter channel flow with moderate Reynolds number as already briefly
described above in Section 6, Fig. 12. In Fig. 15 the authors plot
the spanwise two point velocity correlation function for the stream-
wise velocity component, Reuu(z) for two distances from the wall for
reference. One can clearly see the negative minima of Reuu(z) at dif-
ferent z+ for two different distances from the wall y+. The location
of the minima corresponds to 1/2Lstreak. For the smaller wall dis-
tance y+ = 16.7 the streak spacing is about, Lstreak ≈ 160, which is
bigger than the ones usually quoted from DNS carried out for lower
Reynolds numbers. But this does not imply that a conclusion on Reτ
dependence can be made at this stage. For a large distance from the
wall the negative minima is quite broad and not as well delineated.
Still the negative minimum at Lstreak/2 ≈ 300 seems discernible.

In Fig. 15 the authors plot the normal to the wall velocity com-
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ponent two point correlation function Rνν′(z). At two different dis-
tances from the wall, the farther is deep inside the logarithmic profile
universal region Rνν′(z) shows well discernible negative minima. This
minima signifies the change of sign of the normal velocity component
v by the rolls, albeit for the spacing ∆z+ different for every y. The
behaviors of the two correlation functions Ruu′(z) and Rνν′(z) are
very strongly indicative of the existence and general structure of the
streaks and rolls as described above.

Two remarks should be made. In reality of course the streaks
of and rolls are not strictly periodic and are most probably quasi-
randomly spaced. Nevertheless, the negative correlations seems def-
inite and therefore the conclusion of certain typical dimensions for
both the streaks and the rolls. On the other hand their position in
spanwise direction can be even random while the minima in the cor-
relation functions will remain. The presence of these minima does
not indicate by themselves the spatial coherence.

Another remark has to do with the fact that the sense of rotation
in the rolls determines the sign of streamwise vorticity ωx and there-
fore we can conclude that the sign of ωx reverses in the counter-rolls.

This is not the end of the story. From time to time the streaks
and rolls meander in the spanwise direction and also in the direc-
tions normal to the walls and erupt into small-scale activity. While
they meander in spanwise z+-direction they produce spanwise veloc-
ity component and spanwise vorticity component. But the relative
direction of velocity and vorticity remain the same. When the streaks
and rolls lift up normal to the wall they create normal velocity and
vorticity components and then again the relative direction between
the two does not change. It is only when the uplifted rolls erupt in
small scale debris then the velocity and vorticity misalign and be-
come random. This eruption is the phenomenon of so-called bursts
and sweeps and these two probably produce most of small scale turbu-
lent activity that is subsequently dissipated. The streamwise length
of the streaks and rolls of order 1000δ is actually the length that the
rolls maintain their stable state that is the typical distance between
the bursts.

The bursts are ejection of the relatively slower moving at the walls
fluid from the inner boundary layer into the regions of faster moving
fluid in the outer layer, and the sweeps are on the contrary to the in-

390 Concepts of Physics, Vol. VI, No. 3 (2009)



Coherence in turbulence: new perspective

rushes of faster moving fluid into the regions closer to the walls. The
bursts and sweeps are manifestations of acute turbulence intermit-
tency in the boundary layer and they contribute significantly to the
momentum flux at the walls and subsequent turbulent drag. They
are primarily responsible for the peaks of activity in Fig. 13. The
alternation of bursts and sweeps is necessary by the fluid continuity.

How dynamically the streaks and rolls can break? This by the
general construction of the Navier-Stokes equations can proceed only
in triad interactions between the rolls mode and two other modes.
This is what was analyzed in Sirovich, et. al, (1991). It was found
that the roll mode, that is nearly stationary in the sense that its life
time is very long, interacts with two other faster time propagating
modes. It should be pointed out that the analysis was carried out
using the general method of Karhunen-Loeve eigen functions decom-
position.

These eigen functions are build in such a way that they form an
optimal basis for decomposition of a field of interest, in this case
the turbulent velocity field, in a mathematically well defined opti-
mal way (e.g., Sirovich, 1991). The Karhunen-Loeve decomposition
can be proved optimal in a rigorous mathematical sense. In the
framework of Karhunen-Loeve eigenfunctions analysis the resonant
triplets in wall bounded turbulence, made of rolls and pairs of prop-
agating structures, substitute the simple non-linear wave triplets in
Fourier space for HIT. In difference to Fourier or Chebyshev eigen
functions decomposition that are fundamental and do not require
a priori knowledge of the velocity field, the Karhunen-Loeve eigen
functions are built based on empirical data on the field inferred from
experiment or DNS.

In this sense Karhunen-Loeve decomposition is always somewhat
subjective and requires detailed backward comparison with the real
fields, the subjects of decomposition. The great advantage of Karhu-
nen-Loeve decomposition on the other hand is that they capture,
at least in principle, the main features of the fields with relatively
small number of harmonics. If there is coherence in the field the
Karhunen-Loeve decomposition is in principle an optimal tool to ex-
tract it from the flow. In this language the rolls described above have
been extracted from channel flow turbulence as degenerate time inde-
pendent (which is obviously an approximation) energetic harmonics,
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while their meandering and uplifting as interaction with resonance
oblique to the mean flow wave patterns forming triad interactions
with the rolls and propagating with the mean flow (Sirovich, et.al.,
1991), Webber, et.al., 1997). To reiterate the oblique propagating
structures are non-linearly coupled with the rolls in such a manner
that a roll and two propagating waves form resonant triplets. These
oblique propagating structures considered as the spanwise meander-
ing and uplifting of the rolls can be interpreted as the typical modes
of instability of the rolls. But in the same time the coupling of two
oblique waves can generate a roll. This necessitates the propagat-
ing harmonics to carry sufficient energy as well. This duality is the
essence of the nonlinear coupling between the rolls and the propagat-
ing wave like structures.

It should be pointed out that the rolls and oblique patterns are
statistically defined and become apparent and delineated only when
a sufficient number of realizations of turbulent flow are considered in
a properly designed statistical scheme. An important property of the
wave structures is the coherent manner in which they are dynamically
coupled with the rolls. It was found that if they are excluded from
the statistical analysis the Reynolds stress time trace loses its inter-
mittent character. In reality of course the streaks, rolls and oblique
modes are more complicated and limited number of modes analysis
that was considered by DNS of relatively low Reynolds numbers chan-
nel flows has not been yet the final word in the matter. Nevertheless,
the works of Sirovich and his co-authors are perhaps the best analysis
of what is happening in, at least simplest, wall bounded flows. The
fact that the bursting and sweeping events are tied up with instability
of the streaks and rolls that can occur only in resonant triad inter-
actions with oblique modes and that these propagating structures
are the precursors of rolls instability and by implication carriers of
intermittency seems to stand on firm ground (e.g., Webber, et.al.,
1997).

The triad picture of interactions is of course inevitable from the
general structure of the nonlinear coupling in the Navier-Stokes equa-
tions. In the Karhunen-Loeve decomposition however the coherence
of the vortical structures enters naturally to some extent, while for
HIT coherence and anisotropy of BCC is hidden in the Fourier anal-
ysis and averaging. In HIT the averaging hides anisotropy and co-
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herence and only visualization and sampling reveal them. In near to
wall turbulence the mean flow orients the structures accordingly and
they become much more obvious to eye and sampling analysis such
as Karhunen-Loeve decomposition.

Note though that so far the streaks and propagating structures
were not identified as helical structures, but this is likely a matter
of time only. All the qualitative description of rolls and their me-
andering without losing the relative alignment between the velocity
and vorticity quite strongly point to this end. Additional indications
can be inferred from the following DNS results for a turbulent chan-
nel flow (Shtilman and Levich, 1995 unpublished). Helicity per unit
volume in a channel flow can be written as follows:

H = 1/2∆

∫
< h⊥(y, t) >′ dy = 1/2∆

∫
h⊥(y)dy, (10.1)

where:

h⊥(y) = hx⊥(y) + hy⊥(y) + hz⊥(y) =< h⊥(y, t) >′=

= 1/LxLz

∫
u(x, y, z, t)ωx(x, y, z, t) + v(x, y, z, t)ωy(x, y, z, t)+

+w(x, y, z, t)ωz(x, y, z, t) >
′ dxdz. (10.2)

The mean velocity U(y) and the mean Ωz(y) vorticity do not con-
tribute to the mean helicity.

The quantity h⊥(y) therefore is helicity partially averaged over
the plane (x, z) and over time. It can be compared to H(k) spectrum
in HIT. In the latter case we saw a nontrivial behavior of the mean
helicity spectrum generated by the viscosity and nonlinear coupling
in the ultraviolet range in k-space. And now we want to see the be-
havior of a similar quantity in the near to wall region in a channel
flow. To do this we performed DNS of a channel flow with inflow-
outflow boundary conditions in streamwise x-direction and periodic
boundary conditions in spanwise z-direction as is usual, and the chan-
nel half width in normal to the walls y-direction corresponding to the
Reynolds number (6.6), Reτ = ∆/δ = 180.67 The ensuing steady

67In DNS of turbulent channel flow the velocity field is represented in normal to
walls inhomogeneous y direction as Chebyshev polynomials expansion. In (x, z)
plane velocity is assumed having periodic boundary conditions and the usual
Fourier expansion is used.
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Figure 15: From Rajaee, et. al (1995) they show two point span-
wise correlation functions for the streamwise and normal to the wall
velocity components. The negative minima correspond respectively
in a and b to the mean streak spacing and the mean roll spacing in
spanwise direction.
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state turbulent flow was well resolved and showed the mean veloc-
ity profile and the Reynolds stress almost identical to the ones in
Fig. 11 and 12 (carried out for a slightly smaller Reτ = 125) and
adequate for this still relatively low value of Reτ .

The result for h⊥(y) inferred from this DNS is shown in Figs.
12a and 12b. The depicted h⊥(y) is a result of time averaging over
40 time realizations of the flow. Helicity is shown only for one half
of the channel since it looks very much the same in both halves of
the channel. Also it has the same sign near the walls and near the
centerline regions. The dashed line shows the streamwise component
νωx for comparison:

hx⊥ = 1/LxLz

∫
< u(x, y, z, t)ωx(x, y, z, t) >′ dxdz. (10.3)

Inspection of Fig. 15 clearly supports the above assertion of the
correlated nature of the helicity fluctuations in the wall region. This
helicity coherence is quite similar to what was observed for the he-
licity spectrum in Fourier space in the simulations of the BigBox
turbulence if we only as a thought experiment compare the mean he-
licity spectra at l = k−1 near to the dissipation range in Fig. 9 and
the distance from the wall near to the viscous sublayer. Indeed, in
the small l = k−1 range the helicity spectrum in Fig. 9 is strongly
coherent and is positive for most of wavenumbers. Thus the sum-
mation over the range would lead to amplification of helicity value.
The h⊥(y) shows much the same and is everywhere negative in the
wall region and everywhere positive in the central part of the half
channel (and negative in the other half of the channel). But the
amplitudes of h⊥(y) are much higher in the wall region with well
developed maximum at y+

h⊥max
≈ 32. In the part of the buffer zone

with most of turbulence production and dissipation on the contrary
the mean helicity is quite smaller. Very close to the wall, ostensibly
in the viscous sublayer, the mean helicity has the second local max-
imum, primarily due to the streamwise component hx⊥ and probably
has to do with primal streamwise vortices produced by wall friction.
Generally in the buffer zone h⊥(y) is made up of two contributions
primarily, the streamwise hx⊥ and spanwise hz⊥, so that approximately
h⊥ ≈ hx⊥ + hz⊥. If helicity is associated with the streaks than the
spanwise component hz⊥ would be related to the rolls meandering in
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z-direction and propagating oblique modes. In general the structure
of h⊥ seems compatible with the conjecture that turbulence in the
wall region is primarily made of BCC. We see in Fig. 16 and Fig.
17 that the hx⊥ qualitatively closely follows h⊥(y) as long asy+ < 50.
This similarity of h⊥ and hx⊥ tells something about the structure of
the flow in the wall region. Indeed, consider an isolated roll. It is
defined by a certain direction of large-scale u and a sense of rota-
tion, as was described above that generates large scale ωx, say both
u and ωx directed opposite to the flow. The small-scale contribution
to velocity and vorticity vanishes when the averaging is carried out
over the roll volume. In counter-rolls separated by the streak spac-
ing the direction of u would change to become in the flow direction,
so that the sum of the streamwise velocities of the streaks vanish.
The direction of ωx also reverses in the groups of rolls separated by
the roll spacing, so that the total streamwise vorticity in a group of
rolls would cancel as well. But there is overlap when both u and ωx
change directions at the same time. When it happens the product
uωx remains with the same sign and thus the mean streamwise he-
licity component over span of two adjacent rolls is generated. The
rolls meander without changing the prevailing directions relative to
each other, but these would become spanwise now and hence generate
hz⊥. The flow in reality is rather statistical so that neither velocity
nor vorticity are exactly compensated in adjacent separate pairs of
rolls or streaks. However, qualitatively the tendency is as described
when the averaging is done over many rolls. These considerations
indicate that the relative scale that is given by the ratio of energy
and helicity E(y)/h⊥(y) would be of order ≥ 2Lstreak, which in this
particular DNS turns out to be the case. The cited work of Shtilman
and Levich, (1995) was not followed up and thus no detailed data on
helical structure of the streaks and rolls is presently available. But
I would like to express confidence that this is a matter of time only
when the helical structures in the channel flow will become a subject
of interest as it has happened with other turbulent flows, HIT, jets
and geophysical structures.

BCC conjecture brings to mind a quite fascinating vision of wall
bounded turbulence. BCC in the limit of very high Reynolds num-
bers tends to become fractal surface, multiscale and rugged. All the
small scale events then can be seen as just the BCC fractal surface
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penetrating into the outer layer turbulence and actually forming the
flow profile there. This looks for the relatively low Reynolds numbers
flow analysis as meandering and uplift of delineated rolls and bursts
and sweeps with a semblance of time regularity. In reality the picture
of events may be much more complicated and irregular, if not to use
the word chaotic.

Note that the location of the helicity maximum is exactly the
same as for the maximum of Reynolds stress in the particular DNS
of Shtilman and Levich (1995), as can be clearly seen in Fig. 17:

y+
h⊥max

= y+
max ≈ 32, (10.4)

where generally for any Reynolds number y+
max as a function of Reτ

is given by (6.32). The conjecture that I would like to make is that
generally also:

y+
h⊥max

= y+
max ≈

√
Reτ/κ. (10.5)

The equality (10.4) is intrinsic to the main conjecture of this section
that turbulence near to wall is made up of BCC and should be
verified by DNS carried out over a range of Reτ , which is a task for
the future, but the fit (10.4) for a particular DNS used here is quite
unlikely a mere coincidence.

The total helicity and the helicity of each half channel very slowly,
with a typical period of four, five large eddy turnover times, change
sign. When averaged over a very significant number of realizations
it becomes small in clear similarity with the BigBox turbulence (see
Fig. 10, Section 5), although the mean helicity at the walls does not
appear to change practically at all as if being in a real steady state.
The spontaneous helicity of the flow in the wall regions appears to
be extremely durable in time. It should be reminded that the mean
helicity is not at all the optimal quantity representative of BCC. It
is the fluctuations of helicity that should be identified. Nevertheless,
even the average helicity may serve as an indication, as does the
mean helicity spectrum in HIT. We also note that in a way the wall
bounded flows are convenient to analyze, provided that there are no
limitations on resolution. Indeed, what we have analyzed above is the
inner structure of BCC, if of course near to wall turbulence is indeed
made up of BCC. This is much more difficult to do for BCC in HIT.
It is also again reminded that in physical units the ”width” of BCC
and the inner wall region alike tend to zero in the limit Reτ →∞.
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I would like to built up on the empirical observation (10.4). Let
us estimate the volume, in the wall units, of the sub-domain up to
y+
max. In accordance with (6.32) it is:

Vy≤ymax ∼ (∆LxLz/δ
2)Re1/2

τ = (∆LxLz/δ
3)(δ/∆)1/2 =

= Vtotal(δ/∆)1/2, (10.6)

where Vtotal is the total flow domain volume. If this sub-domain
is made up of BCC it means that relative to the total volume the
BCC sub-domain volume is also ∼ (δ/∆)1/2. But this is exactly
the same as for the BCC sub-domain in HIT. In the latter case the
BCC sub-domain volume is ∼ (ld/L) and in the limit (ld/L)−1 →∞
the sub-domain tends to a fractal with DF = 2.5. I conjecture that
this is what happens as well in wall bounded turbulence in the limit
(δ/∆)−1 →∞.

As in HIT the whole flow is created and sustained by the BCC
sub-domain so it is most likely similar in wall bounded flows. In wall
bounded flows the BCC from the buffer zone penetrates like a tongue
into the outer flow as it is meandering in spanwise and normal to the
wall directions. It looks, for low Reynolds numbers flows at least, as
meandering in the spanwise direction rolls and their uplifting from
time to time at an angle to the walls with generation of oblique pat-
terns as a precursor of bursts and sweeps as discussed before. With
the growth of Reτ BCC in near to wall region must become increas-
ingly complicated as is fit for the semi-fractal sub-domain with the
maximum Beltramization lying inside the logarithmic velocity profile
range. This allows an optimal flow of energy from the outer flow to
the walls, as the K41 spectrum provides an optimal flow of energy to-
wards the buffer zone and dissipation region in k-space. In HIT this
is only possible with certain helicity related phase coherence as was
explained in Section 5. In wall bounded turbulence it is likely to be
similar and there should be strong helicity related phase coherence in
place. However the phases are not in Fourier space in this case but for
instance of the Karhunen-Loeve decomposition harmonics locked in
correlated wavepackets. These are responsible for the non-zero mean
helicity and naturally the effect is especially pronounced in the region
near to the maximum of the Reynolds stress that is at the same time
the location of maximal reduction of the nonlinear coupling.
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It is noted that by continuity in the vicinity of extremum of the
Reynolds stress the nonlinear interaction between the mean and fluc-
tuating parts of the velocity field is relatively more reduced. Applying
the Reynolds averaging to the identity (1.9) yields for the Reynolds
stress:

∂k < vivk) >≡ −εikl < vkωl > +δik∂k < (vlvi) > /2. (10.7)

Therefore it seems natural due to continuity to expect that near this
location the Beltramization of helical fluctuations would be maximal
with the associated maximal relative reduction of the nonlinear cou-
pling. It is also likely to be the location of a weakest compensation
of the positive and negative helicity fluctuations and of subsequent
peak of local mean helicity. In low Reynolds number flows as are in
the scope of modern DNS this location is on the edge of the buffer
zone, but it will move away from the buffer zone with the increase of
Reτ in accordance with (6.32).

Summarizing it is conjectured that as in HIT the nonlinear cou-
pling is relatively reduced, better to say balanced by BCC in such
a manner that the K41 scaling is held, similarly BCC balances the
Reynolds stress in wall bounded flows in such a way that it is approx-
imately constant and thus forms the universal logarithmic profile. I
would like to note that BCC exists not only in the near to wall re-
gion. In fact the structures are everywhere so that it has sense to
introduce BCC(y) concept to underlie this fact. And most likely it
is this immensely complicated structure that creates the whole wall
bounded turbulence. It is expected that as in the case of HIT in the
limit Reτ →∞ the BCC(y) will be a fractal domain with maximal
dimension DF = 2.5.

But the BCC in the wall region may have particular significance
for the problem of turbulence control since much of the turbulent drag
comes from near to wall streaks meandering, uplifting and bursting
in the buffer zone. Although I suspect that for truly high values of
Reynolds numbers the situation may be different in the sense that
the near to wall BCC and BCC(y) farther from the walls would
not be well delineated.

It also necessary to reiterate that the boundary between the buffer
zone and the region with universal logarithmic profile may be also
not cast in stone at y+ = 30, as is usually presented. Indeed, building
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upon the above conjecture it would seem clear that if the distances
from the wall are such that they overlap the scales interval that is the
inverse of wavenumbers from the buffer zone in k-space (see Section 9)
than the energy spectrum is not K41 anymore and the considerations
that led in Section 6 to logarithmic velocity profile, i.e., Eqs. (6.15)
and (6.16) are not true anymore.

Figure 16: From Shtilman and Levich (1995), published in Levich
(1996), it is a plot of the mean helicity h⊥(y) in half channel averaged
over many time realizations and for comparison the same for the
streamwise component hx⊥.

Figure 17: The same as in Fig. 15 but with more details in a part of
the half channel flow up to y+ = 80.

Therefore the profile in the buffer zone should be accordingly re-
considered. We shall confine the discussion of this issue for the time
being to comments in the endnote below, because there are so many
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things that are not understood in wall bounded turbulence that ob-
taining one more formula that cannot be unambiguously verified by
experiment or DNS at this stage is rather premature.v

It was conscientiously attempted and in fact established numer-
ically for a flat channel turbulent flow that interfering by external
perturbations into the turbulence dynamics, in such a way that the
phases of certain harmonics, e.g., corresponding to oblique waves, are
randomly mixed from time to time, results in fundamental modifica-
tion of the turbulent flow and in particular in modification of the
rolls structure and dynamics (Handler, et. al., 1993). The overall
Reynolds stress < uv >, it absolute value dominated by the rolls
in the near to wall region, decreases and its maximum shifts away
from the walls as is seen in Fig. 18, even though the energy content
of the rolls does not decrease. The fluctuating velocity component
< u2 >1/2 decreases significantly, while the streamwise fluctuating
velocity component < u2 >1/2 increases as is seen in Fig. 19. The
characteristic spanwise size of the rolls grows as is seen by considering
the shift leftward of the maximum in the spanwise energy spectrum
E(kz). This maximum in the spectrum corresponds to the mini-
mum of the correlation function Ruu′ in Fig. 15. The typical time
span between the bursts increases. The conclusion one makes is that
the random phase oblique waves are incompatible with the intrinsic
coherent coupling mechanism with the rolls, in consequence the dy-
namics of the rolls formation and disintegration becomes anomalous,
the bursts and sweeps rate diminishes and effectively the energy flux
to the walls also diminishes. This last can be seen in Fig. 18 as the
shift and reduction of the rate of turbulence production. A point of
potential interest is that the effectiveness of interference with turbu-
lence dynamics not only depends on the group of modes which are
chosen for phase decorrelation but also on the frequency of this decor-
relation. Indeed, it appears that there is a resonance optimal time
interval between the successive phase decorrelations, where the time
is expressed in wall units time T+ = Tv∗2/v = T/(δvast) and T is
the usual time in computational time steps. This resonance frequency
of phase decorrelations corresponds to the largest effect of drag re-
duction. The dependence of the impact that the phases decorrelation
makes on turbulent flow is further illustrated in Fig. 20 by different
shifts of the maximum of the spanwise energy spectrum E(k). But
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interestingly the largest effect of drag reduction does not correspond
to the minimal frequency of phase decorrelations chosen in the DNS,
corresponding to the interval T+

min = 4.69, but a smaller frequency
corresponding to the interval T+ ≈ 7. If such resonance frequency
is confirmed to be a real effect it can be of practical importance for
attempts to control drag.

Figure 18: From Handler, et.al. (1993) it shows the transforma-
tion of the Reynolds stress and turbulence production for a spe-
cific DNS run when the phases of certain groups of velocity modes
were randomized every few viscous times. The viscous time is de-
fined as: T+ = Tν∗

2

/ν = T (δν∗), where T is the normal computer
time in computational steps. The run corresponds to a particu-
lar T+ = 4.69, Reynolds stress < uv > /v∗

2

, normal turbulence:
(—-), drag reduced turbulence: (- - - -). Turbulence production

< ε > (y) ≈ 5 < uv > dU/dy(δv∗
2

), normal turbulence (∆ ), drag-
reduced turbulence (+).

The flow modification when perturbed as described above in many
ways looks remarkably similar to that in the wall bounded turbu-
lence caused by a dilute polymer solution injected in the buffer zone.
This well known empirically and very dramatic in scope phenomenon
still remains unexplained, despite a number of conflicting empirical
theories. At the same time the phase randomization effect is quite
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different and much bigger in magnitude by comparison with all other
known empirical methods that led to admittedly meager drag reduc-
tion in developed wall bounded flows (e.g., widely discussed riblets).
The turbulent drag was reduced by phase randomization by nearly
60% in similarity with the largest drag reduction achieved by injec-
tion of polymers into the buffer zone.

From the view point of BCC the effect of turbulence modification
and subsequent drag reduction seems natural. Indeed, even though
BCC occupies only a very small sub-domain in turbulent flow it is
nevertheless, as we argue, is the heart of all turbulence and actually
forms the flow in the whole domain. In particular if in the framework
of HIT the helicity related phases α(k, t) are randomized while in
a manner similar to the one just described the rate of energy dissi-
pation is drastically reduced (Levich, et.al., 1991; Murakami, et.al.,
1992). The phase randomization is a rather clear test for turbulence
coherence and its importance. As a matter of principles it allows to
radically modify and probably manage turbulent flows by using min-
imally intrusive perturbations on natural turbulence, but in such a
manner that the perturbations pinpoint BCC. This is like a surgery
with minimal intrusion applied in precisely localized way to the site
that should be incised. It should be pointed out that phase random-
ization that is numerically implemented on the flow Fourier harmon-
ics corresponds in physical space to some workless forcing and in this
sense is the least intrusive.w In the wall bounded flows the interfer-
ence with BCC would mean that in a thin layer of turbulent flow
adjacent to the walls should be perturbed in a certain way that mim-
ics the phase decorrelations in Fourier space. The possibility is that
polymers do exactly this by interfering with the wall BCC structure
and dynamics. The fluid sticks to long polymer molecules and defi-
nitely unravels and stretches them as it does with vorticity lines. The
elastic effect causes feedback reaction on the vorticity lines stretching
and this is what can likely disrupt the coherent mechanisms of BCC
dynamics.

Turbulence management in wall bounded flows is a hugely impor-
tant subject. Thousands of research works were devoted to it in the
last 50 years. But except of empirically observed large effect of drag
reduction by polymer additives there is little to report in terms of
achievements. Few percent of drag here or there that may be useful
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Figure 19: Root mean square fluctuating velocity components
for normal and phase randomized turbulence (T+). Normal tur-

bulence: u′ =

√
< (u/ν∗)

2
> ([] ); v′ =

√
< (ν/ν∗)2 > (4);

w′ =
√
< (w/ν∗)2 > (×). Phases randomized turbulence: u′(− −

−−); v′(−−−−);w′(· · ·).

in particular applications, but no general approach and few ideas. If
it was not for the fact that a few drops of polymer substance cause
such a tremendous effect of drag reduction one would think that tur-
bulence cannot be tamed and drag cannot be diminished. But we do
have this glaring example that proves the opposite. The phase ran-
domization is the only instance when a theoretically applied concept
demonstrated that an affect of the same magnitude as with polymer
additives can be achieved in principle. It would seem that such a dis-
covery would generate a splash of experiments and works trying to
expand in this direction or on the contrary close this line of enquiry if
it turns out to be wrong. For instance the effect of drag reduction of
about 3% by riblets (shallow streamwise groves at the walls) has been
a subject of hundreds of publications over a period of many years and
the arguments are still on whether it is one percent more or less, if
the effect exists at all (most probably it does).

Unfortunately this is not what has happened after the publication
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of the results by Handler, et.al. (1993) and there are still very few pa-
pers that touch upon the mechanisms described here. In neutral fluids
this is of course a very difficult and delicate task to implement an al-
most non-intrusive perturbation. It is still remains unclear whether
static perturbations may substitute for the dynamic perturbations
that are equivalent to the phase decorrelation. Certain attempts have
been made to implement the drag control by passive methods (static
perturbations). Sirovich and Karlsson (1997) reported a large drag
reduction for a channel flow using passive random disturbances that
were supposed to mimic in some way the phase decorrelations in the
flow. They were trying to implement the passive means for drag con-
trol that were described in Sirovich, et. al. (1994) and Sirovich, et.
al. (1998). Unfortunately it was later disclosed by the authors that
their results were wrong in part or totally as far as the measurements
were done and analyzed.

The second attempt was reported in Monti, et al. (2001) trying
passive means somewhat similarly to the previous research of Sirovich
and Karlsson but with variable parameters of surface perturbations
adjusted to the growing BL turbulence. The authors claimed sub-
stantial positive drag reduction in a certain region of BL and overall
drag reduction. As far as I am aware of there were no serious attempts
to validate or repudiate these results.68

The measurements of drag reduction are excruciatingly difficult
task and many attempts and plenty of experimentation and ingenuity
are needed to confirm the validity of one or another result. As far
as the mechanisms briefly described here are concerned these are the
tasks for the future. But the most outstanding prime objective is
the positive identification of BCC in the wall region. If this is done
then it would be possible to proceed with conscientious program of
interfering with BCC in a beneficial manner. In the meantime it
remains to live with a verdict passed by Bushnell in his comprehensive
”Aircraft drag reduction-a review” (2003) where he comments on the
works of Handler, et.al., (1993) and Murakami, et.al., (1992), among
a number of others from the category he calls ’vision’, as follows: ”At
this point the real-time control of turbulent wall dynamics remains an

68Both experimental programs were initiated and supported by grants from
Ormat Industries Ltd. (Israel) and its subsidiary Orlev Ltd. (Israel). The work
of Monti et al. (2001) was also supported by EC JRC, Ispra.
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extremely interesting ‘vision’”. Hopefully the engineering community
will take upon the task of testing this extremely interesting ’vision’
along the lines outlined here.

Figure 20: One-dimensional energy spectrum E(kz) at y+ = 15. The
solid line is the normal turbulence. There is a well defined peak
indicated by the arrow and corresponding to the streamwise rolls
having in this case the width ∼ 50δ ( wall units). The rolls are
also clearly observed by visualization of near to wall turbulence (e.g.,
Hinze, 1975). The other lines are the plots of the spectra modified
in different runs with phase randomization done for different values
of T+, the minimal being 4.69 and the maximal 23. All modified
spectra have the maximum shifted to the lower values of kz indicating
that the corresponding rolls become wider in spanwise direction as
Lroll ≈ (kmax)−1. Since the rolls hold most of turbulent energy (at
least in near to wall region) it means that the energy content shifted
to larger scales.

11 Concluding Remarks

In the essay of Lumley and Yaglom (2001), ”A Century of Turbu-
lence”, the two outstanding scientists in the field of turbulence wrote:
”We believe it means that, even after 100 years, turbulence studies
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are still in their infancy. We are naturalists, observing butterflies in
the wild. We are still discovering how turbulence behaves, in many
respects. We do have a crude, practical, working understanding of
many turbulence phenomena but certainly nothing approaching a
comprehensive theory, and nothing that will provide predictions of
an accuracy demanded by designers”. It is difficult not to agree with
these words.

During the 100 years that Lumley and Yaglom allude to the whole
scientific landscape has been dramatically transformed. Newton’s vi-
sion of Universe gave way to General Relativity and Quantum Me-
chanics. And some leading physicists asserted that they are close to
Theory of Everything. Someone, anonymously of course, hinted and
caused popular stirring at creating quantum black holes in a rather
ordinary looking but admittedly impressive in size collider. And some
biologists assure us that except of details they know how organized
life has evolved from primordial chaos by pure random selection and
wish to survive. And in all this spectacle of power of scientific thought
and claims we have to confess to have no clear idea how the usual
storms are formed and organized, what is the origin of coherence in
ubiquitous turbulence that we can observe with our naked eye ev-
ery day all around. It is not that we don’t know the details; on the
contrary we know plenty of them. What we don’t know are the very
principles of organization in turbulence. Surely this glaring ignorance
must make us feel slightly less arrogant as researchers.

And it is not that fewer or lesser minds worked on fundamentals
of turbulence. Some great physicists and mathematicians tried their
hand in this field and left little imprint for posterity. Some were
successful in the sense defined by Lumley and Yaglom. They for-
mulated certain general principles of turbulence as science discipline
and great engineers developed ingenious methods for practical appli-
cations bypassing the need of fundamental understanding. But the
need is still there and for the theory of turbulence not to stagnate
it should leap forward to a new level of awareness. Such leap would
be a comprehensive understanding of how and why from the initial
chaos coherence in turbulence originates and evolves.

In this paper it is asserted that strongly correlated helical fluc-
tuations is at least a partial answer that furnishes quite a puzzling
mechanism at the core of the origin of coherence. I would like to ob-
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serve that conjecture on the role that helicity fluctuations may play
in turbulence was made over 25 years ago, and not only it did not
die, as many conjectures in this field did over time, but on the con-
trary has found important experimental confirmations. This made it
possible in this paper to expand the scope and ramifications of this
conjecture and to develop it into real theoretical assertions and even
claims.

To summarize it is asserted that the essence of all turbulent co-
herence are small sub-domains of nearly Beltrami flows cells with the
opposite helicity sign that are clustering together and make up co-
herent structures. These Beltrami cells clusters, shortly BCC, are
the relict of shortlived helical fluctuations that serve the purpose of
reducing, or more correctly balancing the nonlinear coupling in the
Navier-Stokes equations in such a way as to provide optimal condi-
tions for the energy flux into the small scale harmonics, in conjugate
Fourier space and/or towards the boundaries, so that energy can
dissipate freely into heat. But this process necessitates that strongly
coherent virtual helical fluctuations are formed that evolve into BCC
filling a small flow sub-domain, but responsible for most of vorticity
generation and energy dissipation. In fact this sub-domain can be
seen as turbulence and most likely by induction creating and sustain-
ing the whole flow domain into which it is embedded. It was claimed
that asymptotically BCC has the leading dimension DF = 2.5. But
likely there are smaller dimensions sub-domains playing important
dynamical role and making BCC a multifractal object.69

BCC are asserted to be the building blocks in all turbulent flows,
from flows in pipes to tropical hurricanes and beyond. Similar struc-
ture of coherence may be also present in MHD plasma turbulence,
i.e., with the magnetic field playing the role similar to vorticity in
usual turbulence, but this remains to be thoroughly clarified.

BCC may present possibilities for turbulence management, and in
fact interference with BCC coherence could be the only fundamental
way to control turbulence. If MHD turbulence has similar coherent
build-up this may pave way to entirely new mechanisms for plasma
turbulence management. But this is too large a subject for this pa-

69The matching of NT with multifractality should be a subject of separate
study as was already pointed out in Section 9. Certain considerations to this end
are discussed in Endnote s.
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per. In the last several years anomalously large helicity fluctuations
and associated stabilizing reduction of the nonlinear interactions were
found in various turbulent flows. From HIT to MHD turbulence in
solar wind, to turbulent jets (Gavita, et. al., 2008)x, to compress-
ible flows turbulence (Andreopoulos, 2008) and most revealingly in
geophysical structures, e.g., hurricanes, midlatitude storms and tor-
nadoes, where the presence of anomalous helicity was established
quite unambiguously. That most geophysical mesoscale structures
(and their environs) are helical fluctuations and this is what gives
them their relative stability as a result of reduction of the nonlinear
coupling was predicted in Levich and Tzvetkov (1984 and 1985). The
concept was in a more specific way advanced by Lilly (1985). An ex-
treme concentration of helicity has been recently reported by Molinari
and Vollaro (2008) from their analysis of tropical hurricane Bonnie
(August, 1998). One snap-shot of Bonnie borrowed from Molinari and
Vollaro (2008) is shown in Fig. 21. Helicity (in definition accepted
in geophysical studies) is given by numbers at certain locations along
with the indications of the shear wind at these locations. Without
going into details it can be seen that not far from the center of Bon-
nie helicity values are especially high. The authors assert that the
stability of the Hurricane Bonnie may have to do with extreme values
of helicity in its certain parts called supercells. Similar observations
were made previously for midlatitude storms and tornadoes (e.g., Fei
Shiqiang and Tan Zhemin, 2001). Unfortunately the relevant obser-
vations and some other less meaningful studies, or rather musings of
the last two decades on the role of helicity, often confusing mean he-
licity with helicity fluctuations, have not led to quantitative analysis
and indeed remained primarily on the level of 19th century natural-
istic observations on peculiarities of certain butterflies.70 It is hoped
that the present study will help understanding that BCC is not one
more peculiarity of turbulence but an issue of prime significance that
if confirmed further beyond doubt may re-define understanding of
turbulence. It is important to analyze with as many fine details as
possible the presence of BCC in various turbulent flows first of all in

70I would like to remark once again that mean helicity by itself generally plays
little dynamical role but it is helicity fluctuations that play the basic dynamical
role as described in this paper. When reasearchers observe intensive helicity flow
domain they should be looking for a domain with anti-helicity somewhere.
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BL turbulence. If BCC are there, as is predicted in this paper, this
would mean considerable leap in understanding turbulence coherence.
The positive and universal identification of BCC would allow study-
ing their inner structure and may be give practical insights into ways
to control turbulence, in neutral fluids and plasmas.

I would like to detour into what some would think of as a philo-
sophical detraction, and comment on a general feature that may have
bearing on non-equilibrium systems other than turbulence. A rather
obvious point is that while studying certain non-equilibrium complex
systems one encounters situations in which a system is injected en-
ergy by external source and this energy is relatively well organized,
for instance has comparatively low number of degrees freedom and in
consequence relatively low entropy, Sin ≤ S0, and subsequent to this
energy injection the system seemingly by itself71 creates some inner
coherent organization, while at the same time energy is eventually all
dissipated out of the system but having on the whole much higher
entropy Sout >> S0. A closest to us all example is the Earth itself
seen as a system, e.g., Penrose (2005). Daily and yearly it receives
solar energy. Although the solar source is thermal but primarily the
energy is in ultraviolet and blue and visible red part of the spectrum.
The solar energy is mainly reflected back, but some small fraction
of it is absorbed and captured by various elements on Earth, oceans
primarily, vegetation, etc. When captured this energy fraction facil-
itates amazing things, from organization of atmosphere and oceans,
turbulent organization to be sure, to photosynthesis and all the way
down to biological organization. Oceans use this energy in particular
to organize atmospheric circulation in conjunction with its own circu-
lation. And this is done through turbulent mechanisms. Vegetation
through photosynthesis creates oxygen and this facilitates biological
organization and so on. I have no knowledge of all the processes and
the balances of energy re-distribution and primarily guessing using
some common sense. But what is clear is that all this used energy is
dissipated back into space, or rather excreted. Because even though
the energy that is dissipated out into space is the same as the energy
that was absorbed, nevertheless it is different in quality. It is spent
energy that is irradiated as heat in primarily infrared part of the spec-

71This is in difference to say a power station that is also a useful system, a
converter of energy, but works as directed by engineers.
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trum. Its photons are much less energetic and the total number of
photons is thus much bigger in order to have the same amount of en-
ergy. In consequence the energy coherence is much less. While energy
was stripped of its coherence Earth as a system used this coherence,
in particular to maintain the turbulent organization of the oceans
and atmospheres circulation, cascading all the way down probably to
biological organization, as vividly described by Penrose (2005).

The examples when energy flowing through non-equilibrium sys-
tems loses its coherence that is utilized by the complex systems for
creating certain inner smart organization are many. From unicellu-
lar organisms that generally eat highly organized organic nutrients
and excrete lower organization matter, while ostensibly utilizing the
nutrients coherence for creating and sustaining its own organization,
to formation of galaxies from uniform gas where the galaxies relative
coherence is compensated by increased entropy of gravitational field.

Figure 21: Field measurement of a typical tropical hurricane Bonnie
made in August 2001 and analyzed by Molinari and Vollaro (2008).
The values of helicity are indicated by the numbers in certain units
and claimed by the authors to be exceptionally high and as stated by
the authors contribute to the Bonnie stability.

It is fairly amazing to observe that the same underlying principle
is apparently as basic for turbulent flows. This puts turbulence in a
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league of all important smart non-equilibrium systems that can work
as machines metabolizing lower entropy energy into higher entropy
energy and while doing this creating and sustaining highly organized
structure. Indeed, turbulence is created and fed initially by relatively
low entropy sources with relatively few degrees of freedom, would it
be a laminar-turbulent instability or even a random forcing that acts
primarilly at large scales and thus has relatively few degrees of free-
dom. In the end all the energy received is dissipated out of turbulence
as heat having many degrees of freedom and low organization. Energy
is stripped of its coherent content. But instead the flow acquires co-
herence through the birth of highly organized BCC, confined though
to a small sub-domain in physical space. The similarity is striking but
in the case of turbulence we can investigate in detail this process.y

It may be important to note that this organization is not what is
sometimes called ”self-organization”. There is nothing of this kind
in turbulent flows. Hurricanes and tornadoes do not self-organize,
or originate from clever models. The coherent organization of tur-
bulence is a specific phenomenon imposed by certain very particular
properties of the specific and deterministic equations of motion, a
conjugation of the Eulerian nonlinear dynamics, rigorous and unique
for ideal continuous media, and fundamental dissipation processes
that are phenomenologically matched with the ideal dynamics by the
viscous term in the Navier-Stokes equations.

May be we are getting a glimpse of how coherence evolves in other
more complex non-equilibrium dynamical systems, in an ordered and
deterministic manner. Because as complex as turbulence is by itself
there are many other systems around us surely more complex, for
which we do not know dynamical equations that would show the
reasons for and actually impose coherence development as intrinsic
part of their dynamics. In this context it would be right to classify
turbulence as ”simplest of complex systems”.72

Endnotes
a No doubt those complex local conditions of intertwined atmo-

72The definition of turbulence as ”simplest of complex systems” belongs to E.
Tzvetkov to whom I am indebted for introducing me into the fascinating field of
atmospheric turbulence.
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spheric and oceanic flows are all important for the formation of par-
ticular organized geophysical events. But they are facilitators and
not the underlying reasons for the very possibility of existence of co-
herent structures in atmospheric and ocean turbulence. A number
of outstanding geophysical studies note the intrinsic global coherence
of atmospheric phenomena at all scales. I will cite some that I am
familiar with in what follows. But the point is even now these studies
have gained only limited recognition by mainstream meteorologists
despite the many observations proving their validity.

It is important to have fundamental answers to all the ”whys” of
the geophysical turbulent organization. For instance there should be
turbulent mixing of temperature and humidity in the Earth’s atmo-
sphere for the biological species as we are to thrive. This is what
the tropical storms do when entering midlatitudes, a wonderfully be-
nign phenomenon. Not as hurricanes are portrayed in popular press
- destructive element and growing menace as the emission of CO2 in
the atmosphere continues. The currents play equally important role
in the global climate formation (e.g., Elliot, 2007). Recent observa-
tions (e.g., Oey, et.al., 2007) show deep interrelation between tropical
hurricanes and ocean currents.

Many smaller scale ”violent” atmospheric events serve towards
similar goals. All these events are most probably intertwined and
tuned to an amazing degree so that to maintain stable and orga-
nized global atmospheric and oceanic coherence. Consider if for one
year suddenly there would be no tropical storms. The consequences
would be totally disastrous, I suspect, on a global scale. Luckily we
can be sure that as the season approaches the tropical storms shall
form. Remarkably all geophysical observations strongly indicate that
the horizontal distribution of energy in a wide range of scales prob-
ably from planetary scales to the scales of millimeters follows as a
function of scale the same power law. Moreover significant segment
of geophysicist argue, based on observational data, that the effec-
tive dimension of the atmosphere from this viewpoint is not 3D, as
one would think looking around, and is not 2D as one would expect
considering huge planetary scales such that the vertical depth of the
atmosphere is negligible by orders of magnitude by comparison with
the horizontal ones. Comprehensive analysis of diverse experimental
data resulted in determination of the leading fractal dimension of the
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turbulent structures in atmosphere as DF ≈ 2.55±0.003, (e.g., Love-
joy, Press Release of McGill University, 2004, Lovejoy, et., al., 2008,
Lilley, et.al, 2008). This is very close to, actually indistinguishable
from DF = 2.5 that is asserted in the present paper to be the lead-
ing fractal dimension for the dynamically active part of turbulence in
all turbulent flows; isotropic or anisotropic alike. The interpretation
by the above authors is quite different and motivated by the atmo-
sphere vertical convective stratification theory of Bolgiano (1959) and
Obukhov (1959), but the closeness of the numbers is worth noting.

Other little known but very illuminating example of an extraordi-
nary coherence of geophysical patterns are the small in size by com-
parison with tropical storms but similar in structure hurricanes in
Eastern Mediterranean bringing rain to Israel and adjacent Middle
East areas with great regularity for thousands of years (Tzvetkov,
1985; Levich and Tzvetkov, 1985). Without these hurricanes much
of the Middle East civilization probably would have not come around.
So many seemingly disconnected factors over large territory should
be in a sort of resonance for these hurricanes to form. And neverthe-
less with some variations the same pattern persists over historically
long periods of time.

b How turbulence originates from smooth laminar flows is a sub-
ject of immense mathematical and practical interest. It was men-
tioned above that big advances and profound understanding of tran-
sitional turbulence were achieved in the pioneering works on strange
attractors of dynamical chaos explaining, e.g., Lorenz (1963), Ruelle
and Takens (1991), Ruelle (1978) and their followers who launched
the vast modern theory of dynamical chaos, the baisc unpredictability
of nonlinear systems. The basis for which can be traced all the way
back to the works of Poincare in the beginning of the 20th century,
Since practically everything in nature is strongly nonlinear, from sim-
plest mechanical devices to planetary systems and biological species
and financial markets the overwhelming philosophical concept pre-
vailing among scientists and educated laymen has become that ev-
erything is chaotic and unpredictable. There is much truth in it as
almost all researchers (and not only researchers) know from personal
experience and computer simulations. The real issue that remains
unanswered now is why despite this undeniable chaos and unpre-
dictability the global world around us, as exemplified by the turbu-
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lent atmosphere, is superbly stable when considered on an appropri-
ate space and time scales. This order can be traced to systems that
have nothing to do with turbulent fluids but this is not the purpose
of this paper.

Most probably all routes to dynamical chaos follow the Feigen-
baum’s scenario of universal period doubling. There is little doubt
that this is how turbulence starts in laminar flows of fluids as well.
Unfortunately, or actually very fortunately for us since the world
around us is stable, the understanding of the onset of turbulence
does not give much of a clue to the properties of turbulence long af-
ter the point of transition to turbulence at certain critical values of
Re = Recritical. The Feigenbaum mechanism explains what happens
near Recritical. But the developed turbulence is a state when the
value of the Reynolds number is far beyond the critical one for the
onset of turbulence. The analogy may be drawn with phase transi-
tions. The Wilson’s RNG theory of second order phase transitions
explained to us what happens in liquid He2, for instance, when it is
cooled to the point of λ transition to superfluid state. It becomes
very strongly fluctuating between the normal and superfluid state.
The same happens at the critical point of all other systems near the
second order phase transition. But it does not tell us what the flow
properties of superfluid He2 are for the temperatures much below the
critical one.

c Helicity is formally defined as
∫

v · ωdV , where the integration
is done over the volume of a compact domain D bounded by the
vorticity lines, i.e., such that the normal projection of vorticity on the
boundary of D is zero: ωn|∂D.Since the helicity density h = v ·ω is a
pseudo-scalar helicity can be either positive or negative and changes
sign under mirror transformation. In mirror symmetric flows helicity
is identically zero.

d Turbulence is a multiple scale motion of fluid elements. Each
scale of motion contains certain amount of the total energy of tur-
bulent motion. The energy spectrum is the energy distribution that
describes how much energy is contained in the different scale motions.
In this sense it plays the same role for turbulence, a non-equilibrium
phenomenon, as Maxwell or Bose-Dirac energy distributions play in
equilibrium gases. But in difference to molecular motion where en-
ergy is attributed to so many molecules in turbulence the role of

Concepts of Physics, Vol. VI, No. 3 (2009) 415



Eugene Levich

molecules are played by macroscopic fluid elements of various spatial
scales and life span dependent on the scale. The Kolomogorov theory
says that fluid elements, or eddies as they are called, of typical scale l
have typical velocity vl ∼ l1/3. Therefore the energy distribution as a
function of scale is E(l) ∼ l2/3. The largest eddies are inclusive of all
the smaller ones; roughly speaking the smaller eddies are inside the
bigger ones and their energy does not contribute much to the largest
eddies. This picture is much more complicated than in the molecular
dynamics. In Fourier space of wavenumbers k ∼ 1/l the energy spec-

trum becomes E(k) ∼ k−5/3, so that E(l) =
∫ kd
k∼1/l

E(k)dk ∼ l2/3,

where kd >> 1/ld is so-called dissipation cutoff wave number the
meaning of which will be explained below. The energy spectrum also
determines how much vorticity is contained in these different scales
of motion. It turns out that although the main energy is contained in
the large scale motion, as should not surprise anyone with the mun-
dane experience of swimming in the waves or aeronautical experience.
But the most vortical is the small scale motion of the order ld ∼ k−1

d .
In fact again it is well known from the experience of bathing in the
waves when one is dragged under water and carried by an energetic
wave. The body then is convulsed by intensive small scale vortical
eddies inside the wave and especially near the bottom pulling in dif-
ferent directions. This mundane experience of bathers and aeronauts
alike when described mathematically is a very complex and peculiar
duality between the most energetic eddies and the most vortical is
behind much of the richness of turbulence phenomenon.

e It is necessary to caution that the calculation was made in the
framework of a particular type of renormalization group and pertur-
bation theory scaling analysis. In general the perturbation theories of
any kind when applied directly to the Navier-Stokes equations are to-
tally unacceptable for analytical description of turbulence, whether
it is a closure or sophisticated renormalization group theory. As a
field theoretical problem the Navier-Stokes equations are not renor-
malizable in the relevant asymptotic limit of small space and time
variations, the so-called ultraviolet limit. Roughly speaking it has to
do with the fact that the parameter of perturbation theory is pro-
portional to a power of and grows indefinitely in this limit. However
when certain assumptions on the nature of the flow are made then
the perturbation theory solutions are possible. The correctness of
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these solutions however is determined by the correctness of underly-
ing physical assumptions. In other words a solution is as good as the
assumptions that allowed the perturbation and scaling analysis to be
meaningful. However this particular scaling analysis is very different
from the many others that were tried before. Briefly the difference
is as follows. The Kolmogorov theory implicitly postulates that the
only important types of non-linear interactions between various ve-
locity harmonics are among the local in the space of wavenumbers
triads. In other words the only important are the couplings between
the triads of eddy of similar size. On the other hand the interactions
between the eddies of disparate sizes are postulated to be vanishing
in the limit Re → ∞. This assumption will be explored below in
more details, but it is clear even from the above short exposition
that if indeed the energy spectrum is generated by a fractal domain
composed of helical cells the local coupling hypothesis is wrong. The
reduction of nonlinearity in helical cells inevitably depends on the
coupling between even the smallest dissipation scales and the largest
integral scale of turbulence.

The scaling analysis carried out in Levich (1980 ) and Levich
(1987) showed that indeed the non-local in the Fourier space of wave-
numbers interactions (or in the space of scales which are the inverted
wavenumbers) is dominant. The non-locality of interactions does
not totally destroy the local character of certain averaged quantities,
such as the energy transfer in wave number space and this is what up-
holds the −5/3 energy spectrum in particular, but introduces another
type of interaction, a non-dissipative ”virtual” interaction between
the nonlocal in Fourier space velocity harmonics. These non-local
interactions although short time and in this sense virtual, neverthe-
less must be observable in particular in the energy spectrum for large
enough values of wavenumbers close to the dissipation range. The
theory predicted a hump in the energy spectrum over the Kolmogorov
spectrum in near to dissipation part of the spectrum as a result of the
non-local interactions. Such anomaly is well detected now in DNS,
although only in the work of Mininni et.al. (2008a, 2008b) the possi-
bility of connection between the energy spectrum excess over K41and
the helical structures was mentioned.

f It may be of interest to analyze in retrospect the history of the
helical concept. It was first brought forward by Levich and co-authors
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in 1982 and 1983 publications and in different interpretation by Mof-
fatt in 1985. With some exceptions the attitude of the professional
community was showing little interest. To start with the existence
and/or relevance of helicity associated effects in developed turbu-
lence, e.g., Rogers and Moin (1987, Polifke (1991), Speziale (1987)
was denied. The confusion was along two different lines. The anoma-
lous alignment of v and ω was seen as a small effect with only rel-
atively few disjoint points in the flow showing the alignment. The
second line of denial was based on confusing the average helicity itself
and the fluctuations of helicity in small sub-domains of the flow or
short lived. Even some recent publications asserted that while helic-
ity fluctuations can play role in the early stage of turbulence decay
from certain initial conditions this role disappears when turbulence
reaches the developed stage, e. g., Holm and Kerr (2007). Kerr and
Holm correctly concluded that the early Euler stage of turbulence
formation is accompanied by acute Beltramization, but concluded
that later this Beltramization vanishes and failed to see the its influ-
ence on the developed turbulence dynamics, except of formation of
vortex tubes. Apparently Holm and Kerr were unaware of a much
ealier paper in which for the first time the acute, dramatic alignment
of v and ω at the very initial stage of turbulence development was
first demonstrated for the decaying Taylor-Green vortex (Shtilman,
et.al,, 1985). The Taylor-Green vortex imposes certain symmetries
on the flow that allowed in this paper to carry out DNS with higher
and respectable value of the Reynolds number, such that could have
not been achieved at that time with no such symmetries imposed.
The DNS showed in particular that the initial stage of Taylor-Green
vortex decay goes through extreme Beltramization before moderat-
ing to the level that since then was observed in many papers on the
subject. Interestingly the Taylor-Green vortex symmetries are widely
used even now for achieving DNS with higher values of the Reynolds
number. Since no helical structures were actually explicitly observed
as decisively as they have been since then, the DNS capabilities were
not sufficient for the purpose, the rebuttal of criticism was not easy.
It is clear that the anomalous alignment effects are secondary in a
way and without the whole concept of helical fluctuations as it was
formulated above this effect cannot be dynamically important. In-
deed, what dynamical effect can be played by 1% or 2% of disjoint
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locations in the flow where the alignment takes place as was correctly
argued in Rogers and Moin (1987) over twenty years ago. It is only
when it is recognized that these are not disjoint locations but a clus-
ter of helical structures, or a relict residue of short lived hierarchy
of helical fluctuations that each contributed to the formation of this
cluster then the importance of the effect can be gleaned. A good
example can be the famous relict radiation with temperature 2.8K
above absolute zero. What would be its significance for Universe
evolution if it was seen in isolation rather than interpreted as a relict
remainder of the Big Bang? The second issue is still plaguing the
understanding of the phenomenon. There had been prior multitude
of papers that correctly showed that helicity itself plays only a lim-
ited role in slowing down the energy cascade to small scales and to
do this it should have the maximal possible value. But from general
mathematical considerations, just the consequence of definitions of
energy and helicity spectra and taking into account the well known
from the Fourier analysis Schwartz inequality, puts upper bound on
the helicity spectrum for a given energy spectrum. If the dynamics is
also taken into account then this maximal value is even lower at small
scales or the high wavenumbers whatever the helicity source at the
large scales is. Since it is these harmonics that are most contributing
to the energy dissipation and all other relevant turbulent fields such
as enstrophy, etc., the usual wisdom is that helicity cannot play big
role for the turbulence dynamics. The average helicity in fact can
be shown to behave similarly to a passive scalar convected by the
velocity field. But as soon as one invokes the concept of helicity fluc-
tuations instead of the average helicity all this reasoning fails. The
helical fluctuations are short lived in a mathematically well defined
way and have the opposite signs of helicity. As a result the averaging
over a time span much bigger than their own life time just eliminates
them, they become effectively invisible. This is why they were called
”virtual” in Levich (1987). Or the structures occupy a small volume
domain and have the opposite sign helicity and hence screening each
other. Then the averaging over space again eliminates them. But
at the same time the helicity amplitudes inside these structures or
fluctuations can be truly large, either for a short time span or in
small sub-domains in space. In this case of course these fluctuations
can influence dynamics by reducing the nonlinear coupling term in
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the Navier-Stokes equations in the limit of high wavenumbers. From
the statistical viewpoint the relevant measure of helicity fluctuations
would be rather their correlations in physical and Fourier space. If
the correlations were weak as they would be if the helicity fluctua-
tions were near to the Gaussian distribution (Bell curve) this would
indicate that they are not dynamically significant. But in reality
they turn out to be acutely anomalous. It was shown theoretically
that the Gaussian law for the helicity fluctuations contradicts to the
assumptions of K41 and interferes with the energy cascade to high
wavenumber harmonics and subsequent energy dissipation. For the
cascade existence it is necessary that the fluctuations should be non-
Gaussian and strongly correlated in the high wavenumber region. But
on the other hand if they are strongly non-Gaussian this is cocommi-
tant to intermittency. In fact the helicity fluctuations are responsible
for intermittency. If it was not for the helicity fluctuations there
would be no turbulence as we know it at all (Levich and Shtilman,
1988; Levich, et.al,, 1991). The logical conclusion would be that
the intermittent regions are not structureless as they were previously
seen, but in fact they have well defined inner coherent flow structure.
The helicity effects are truly subtle and difficult to reconcile with
the usual statistical K41 pnenomenological description of turbulence.
The statistical description is limited if the most important regions of
turbulent flows, actually the turbulent flow core consists of totally
coherent Beltrami flow cells. It is complicated in the first place to
define statistically the observable effects stemming from the presence
of multiscale helicity fluctuations. Helicity structures in their stable
form have mathematical sense when they are delineated from each
other and from the surrounding flow by vorticity surfaces. This life
time is short and the boundaries are impossible to observe in labo-
ratory experiment where the measurements are all made at a point
or a few points in the flow (see the next footnote). The only way to
do it is visualization (Tsinober and Levich, 1983). Numerically this
is also not easy and requires the Reynolds numbers at least as high
as they have been achieved in modern DNS. The relict effect would
be the ubiquitous alignment effect but it is not full proof effect and
can be contested by skeptics. In Levich (1987) and in the previous
works it was stated that the nonlinear interaction inside the helical
fluctuations is reduced. To test this claim some tried to conditionally
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sample the flow and look for the regions of low and high turbulent
activity using several crude criteria for this sampling that were not
always locally directly related to the nonlinear coupling term in the
Navier-Stokes equation. The point is that although the non-linear
coupling is reduced in helicity fluctuations but this is true only in a
relative local sense in space and time. Concurrently it is this relative
reduction that at the same time creates the relatively small size sub-
domains with high amplitudes of turbulent activity. In other words
the nonlinear coupling is reduced in the whole hierarchy of helical
fluctuations everywhere inside the fluctuations during their life time
by comparison with what it would have been for the same absolute
values |v(r, t)| and |ω(r, t)| if there was no alignment between the
two vector fields. The global effect is thus impossible to observe just
considering the regions of small and intense turbulent activity. Un-
less by extraction of the helical structures residing in the regions of
intense turbulent activity and actually making sure that in these re-
gions the alignment is acute. In the past there was only one attempt
in Polifke and Levich (1990) to estimate the correlation between the
extent of global alignment inside a helical fluctuation and the inten-
sity of turbulent activity, but the results though indicative were far
from convincing because the Reynolds number of DNS was by far
too small for the intended conditional sampling procedure. A clas-
sical example of confusion in understanding this subtle effect of the
nonlinear coupling reduction was the DNS of Kraichnan and Panda
(1988). They found that the mean square nonlinear term in the Big-
Box turbulence is somewhat smaller than it would have been for the
Gaussian statistics of v and ω and then showed that the same hap-
pens for other dynamical systems and in particular such that have no
dynamical intermittency. The result they obtained was really trivial
and the reduction of this sort has nothing to do with the reduction
of nonlinear coupling by the ”cellular Beltramization” advanced by
the helical concept. The genuine nonlinear coupling reduction takes
place hierarchically with ultimate formation of the final sub-domain
of high turbulent activity and in this sense the effect is as virtual as
the hierarchy of helicity fluctuations themselves; to be sure a difficult
concept for classical physics. It remains visible only inside the final
stable sub-domain and is observed through the actual strong align-
ment. The alignment is the only way that it can be observed and
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defined. Statistical comparisons have very limited applicability if the
flow is made of quais-Beltrami flows of opposite sign and fluctuating
on a very fast time scale. The effects are almost invisible in crude
statistically averaged quantities. The real progress in experimental
validation, since DNS is in fact a crucial experimental proof of the
existence of helical fluctuations in the sense described here has been
achieved only recently with the direct visualization of helical struc-
tures (Mininni, et. al., 2008 a,b) . Let us consider now with a new
level of comprehension the Figs. 2 and 3. The Fig. 2 shows typical
coherent bands (or patches, or filaments) of intense vortical motion
that is obviously organized. Although they occupy relatively small
volume flow sub-domain they stretch through the whole flow domain
in one dimension. In Fig. 3 the same flow sub-domain is shown but
with local strong alignment of velocity and vorticity structures or cells
indicated in red and blue. Each of these cells is like the one shown in
Fig. 1. It is now obvious that the vortical bands consist of the helical
cells of different sizes in a pattern that is obviously non-random in
the distribution of the cells with the opposite sign of helicity. These
”Beltrami and anti-Beltrami” tubular cells, as shown in Fig. 1, screen
each other so that the total helicity remains small or zero. It is sug-
gested naming the vortical bands in Fig. 2 and 3 Beltrami Cellular
Clusters-BCC. The cells are tubular shape quasi-Beltrami flows of
opposite sign of helicity clumping together and forming the clusters
that are seen as stretched vorticity bands. The definition will help
to fix the semantics of the phenomenon and avoid the repetition of
using intermittently the words vortical patches, filaments and bands
that the literature on turbulence is full of. And the conclusion is
that all CS in turbulence are just aspects of BCC. It is instructive
to delineate here between the concept as advanced in this paper and
the previous works of Levich and co-authors, and the hypothesis ex-
pressed by Moffatt (1985) on the other. It was correctly pointed out
in this latter work that Beltrami flows play a singled out role among
all other Euler flows. However the conjecture that turbulence is made
of Beltrami flows and the energy dissipation and other intense pro-
cesses occur at the boundaries between them is not really correct
as we know now. As was explained above the Beltrami flows and
the boundaries between them are virtual, in the sense that they are
shortlived: both the volume of the helical fluctuations and their life
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time tend to zero when Re→∞. They stabilize only when both are
squeezed into a diminishing sub-domain tending to fractal. Moffatt
correctly understood that the Beltrami flows are singled out among
other Euler steady flows and largely unstable. The truth is that with
shortage of experimental data and insufficiency of numerical data it
was somewhat difficult to put together the helicity fluctuations, frac-
tals and the observed globally weak effect of alignment between the
velocity and vorticity fields together in a consistent scenario. Still in
the starting works of Levich and coauthors the hierarchy of helicity
fluctuations forming a fractal and the consequent relative reduction
of nonlinear coupling were clearly formulated but not directly related
to Beltrami class of flows. Moffatt on the other hand correctly un-
derstood that the Beltrami flows are singled out among other Euler
steady flows to be suitable candidate for the helical fluctuations. His-
torically both approaches should be seen in conjunction and as com-
plementary to each other despite certain understandable mistakes
and inaccuracies made at the time. Despite many years of disrepute
interest of the professional community to helicity in turbulence has
not died in the last 25 years or so. The persistence of the effect of
alignment between velocity and vorticity that would be revealed to
anyone doing DNS of turbulence flows, amplified by a lack of under-
standing of this stubborn effect would cause a good deal of denial
among some. Still others tried to approach this ubiquitous feature
in a more positive way. For instance Farge, et.al, (2001) correctly
associated the alignment effect with coherence in wavelets analysis.
However, the understanding that the alignment of v and ω is a relict
effect of the hierarchical helicity fluctuations evolution culminating
in the formation of BCC has been elusive. As was noted, although
the alignment indicates the existence of helical structures but strictly
speaking does not prove them. But all the attempts of alternative
explanation did not succeed. Still only when the helical structures
are identified as clearly as they are in Figs. 1 and 2, then their pres-
ence is uncontestable. One should compliment Mininni, et.al, (2008a
and 2008b) for their clear testing and analysis of the old predictions
and shedding new light on them.

Some eminent authors in geophysical studies recognized the in-
trinsically helical nature of atmospheric turbulence. For instance
Mary Selvam (1988) wrote: ”The atmospheric circulation patterns
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therefore have fractal dimensions on all scales ranging from the plan-
etary to the turbulence scale, the strikingly visible pattern of fractal
geometry being exhibited by the clouds. The above concept of the
steady state turbulent atmospheric boundary layer as a hierarchy of
intrinsic helical fluctuations is in agreement with the theoretical in-
vestigations of hydrodynamic turbulence by Levich (1987). All basic
mesoscale structures (less than 1000km in the tropics) appear to be
distinctly helical. These include such outstanding examples of orga-
nized geophysical motion as medium scale tornado generating storms,
squall lines, hurricanes, etc.” Another example is the classical works
of Lilly on cumulus storms (1985 and 1986). But the concept still re-
mained on the fringes of general research. Nevertheless, recent data
leaves little doubt that indeed extreme helicity is present in many
seemingly disparate geophysical events, from midlattitude storms to
tropical cyclones, e. g., Molinari and Vollaro (2008). Such helical
structure of geophysical events was explicitly predicted in Levich and
Tzvetkov (1884, 1985). As was noted an unfortunate confusion of
many papers of the last 25 years, including some cited above, is that
they considered the global or statistically averaged helicity. I would
like to reiterate that mean helicity by itself plays limited role in tur-
bulence dynamics. It is the fluctuations of helicity of opposite sign
that are all important. The global or mean helicity can stay zero or
small. As was shown the restrictions of very general mathematical
nature generally do not allow the global or average helicity to be large
in turbulent flows in a dynamically meaningful way. But helicity in
fluctuations can be maximal and in some it is. Then helicity is im-
mensely significant dynamically. Just for the simple reason that it
reduces the nonlinear coupling.

g In laboratories the closest to homogeneous isotropic turbulence
is created in the so-called flows past a grid. A flow of air or water
(sometimes electrolyte, see below) or air goes past a grid and enters
into a long tank with diverging walls, so that the typical transverse
size is much grater than the grid size. The grid serves as a source
triggering instabilities in the flow on the scale of the mesh size. Thus
naturally the flow becomes turbulent and remains turbulent at some
distance from the grid. The turbulent flow propagates in the vessel
but since the integral scale of turbulent flow, comparable with the
mesh scale is much smaller than the distance from the walls the lat-
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ter red by the mesh is lost by the flow but turbulence amplitudes
are still large. All these conditions can be and are properly defined
mathematically by experimentalists. Such is the best approximation
in laboratory conditions to the decaying homogeneous and isotropic
turbulence model considered by Kolmogorov. The measurements are
usually carried out by means of hot wire anemometers keenly respond-
ing to fluctuations in the fluid speed by corresponding fluctuations in
temperature, which are subsequently converted to variations of the
electrical current. Such hot wire anemometers are placed at one or at
a few locations inside the turbulent flows and provide the time signals
of velocity field variations in the flow. The simultaneous data from
two or more local sensors allows, in principle, to compute the velocity
field spatial derivatives as well. The accuracy of these measurements
is naturally restricted by the relative size of the sensors and distance
between them. Thus on the whole measurements furnish experimen-
talists with relatively scarce information as far as the global structure
of turbulence is concerned. As a result experimentalists often take
recourse in visualization techniques, e.g., injection of hydrogen bub-
bles in the flow, supplementary to measurements (Monin and Yaglom,
1975).

This visualization, however, is not always reliable, and often is
not a quantitative method of a scientific study. In numerical simula-
tions a decaying homogeneous isotropic turbulence is generated on a
3D lattice, e.g., a cubic box with periodic boundary conditions called
BigBox turbulence. Turbulence starts from either some unstable lam-
inar flow like Taylor-Green vortex or randomly chosen chaotic initial
flow conditions. The flow then evolves in accordance with the Navier-
Stokes equations that are calculated in small steps forward in time.
After some time elapses the flow becomes turbulent. Since there is no
source feeding energy into the flow eventually turbulence would de-
cay totally due to viscosity similarly to turbulence past the grid large
enough distance from the grid. The distance from the grid in labo-
ratory experiments plays the role of time in the BigBox turbulence.
But for intermediate times turbulence is well developed and can be
regarded as quasi steady state since the typical turbulent times scales
are small by comparison to the typical time during which the total
energy of the flow would dissipate into heat. One also can simulate
BigBox steady state homogeneous isotropic turbulence by introduc-
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ing a stirring force, random or not acting largely at the large scales,
usually comparable or somewhat less than the box size. Turbulence
then develops at the scales much smaller than the stirring force scales.
In the past doubts were cast on numerical simulations of this sort,
in particular over the choice of periodic boundary conditions. With
time it has become clear that the simulations furnish reliable data, at
least for the flows with simple geometry, provided that the Reynolds
numbers of corresponding simulations are high enough and the simu-
lations are well resolved (that is the grid in space is dense enough, the
time step of simulations is small enough and the number of grid points
in space/time is big enough for the choice of the Reynolds number).
However it is still not possible to simulate the flows with very high
Reynolds numbers and complicated flow geometry. This will likely
remain a problem for the foreseeable future. This is another reason
why it is so important to have models of macro scale turbulent flows
based on correct fundamental physics of micro scales of turbulence,
these latter demanding most of the computational power. But to do
this one must understand in the first place this correct physics to
build correct models.

h Generally the solutions of the Navier-Stokes equations describ-
ing smooth laminar flows are unstable in the limit of large Reynolds
numbers and become turbulent. There are exceptions, like the round
pipe flows, or a flow on a rotating disc. But in practice they also of
course destabilize and become turbulent eventually, e.g., due to finite
amplitude perturbations and in practice shape defects.

i The flows of incompressible inviscid fluids are usually interpreted
as Diffeomorphisms of differentiable invertible mappings in infinite-
dimensional configuration space of all fluid particles into themselves
induced by their motion. However the mappings are generally not
analytical in that they are not necessarily invertible. In simple lan-
guage the Euler equations allow non-analytical solutions with gen-
erally infinite number of surfaces, or sheets at which the velocity
field is tangentially discontinuous; fluid layers slide along each other.
Such sheets necessarily develop for instance for the flows at the solid
boundaries. The principles of aeronautics were based on this remark-
able property. Since viscosity is small but not zero and instead the
Navier-Stokes equations govern the flow the sheets of tangential dis-
continuities instead become the thin layers of intensive vorticity, the
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so-called vortex sheets in turbulent flows.
j Additionally in a compact fluid domain the magnetic lines will

fold and if the fluid motion lacks reflectional symmetry, for instance
possessing non-zero helicity they will be twisted. The stretching,
twisting and folding of magnetic field lines is the elegant mechanism
of exponential growth of the seed magnetic lines by the turbulent
dynamo (e.g., Ruzmaikin and Zeldovich, 1983). The dynamo effect
although appears at the first glance as a linear effect in reality is
not because of the random nature of the velocity field. When the
magnetic field is big enough in amplitude the equations of motion
become properly non-linear. The exponential growth goes as long as
it takes the magnetic field to start influencing the fluid motion that
generates its growth. The vortex sheets are unstable and have the
irresistible tendency to fold. But as it is known now while folding
the sheets also foliates into BCC with subsequent quenching of the
nonlinear interactions.

k If analyticity of the velocity field is assumed then the vortex lines
should lie on surfaces of tori only. But analyticity is not generally
possible for the ideal dynamical evolution of frozen-in fields. If the
analyticity assumption is relaxed then the surfaces can be arbitrarily
complex as was explained by Moffatt (1985). The Euler equations
for ideal fluids allow infinite number of solutions with tangential dis-
continuities of velocity and/or its derivatives. Such surfaces can be
seen as vorticity sheets and they are typical for ideal fluid dynamics
and are widely considered in aeronautics in particular as approxima-
tion to viscous flow dynamics. For viscous fluids with vanishingly
small viscosity ν → 0 , or what is the same Re → ∞, the veloc-
ity is of course analytical everywhere, but its space derivatives may
become arbitrary large in a surface like domains in this limit. The
domains will be strongly 2D with thickness tending to zero together
with viscosity. Such surface like domains of large vorticity would be
the equivalent of the vortex sheets in ideal flows.

l The −5/3 energy spectrum was actually formulated in its mod-
ern form by Obukhov after the work of Kolmogorov of 1941 which
formulated and axiomized the main scaling principles for HIT. Many
years of experimental studies of clouds and analysis of atmospheric
turbulent events in general and in particular associated phenomena,
rainfall, pollutants distribution in the atmosphere, etc., carried out
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for over 25 years by Lovejoy and Schertzer (e., g., Lovejoy, et al., 2008)
point out that the Kolmogorov-Obukhov energy spectrum in hori-
zontal plane holds approximately for orders of scales in atmospheric
turbulence. In fact the law holds on the scales much larger than
would be possible to regard the atmospheric turbulence as isotropic,
if there are such isotropic scales at all. The height of the atmosphere
is restricted to about 10 − 15 km and for larger horizontal scales
the motions are obviously not isotropic. The atmosphere is stratified
and greatly affected by gravity and buoyancy. Nevertheless, the −5/3
spectrum holds approximately as a function of horizontal scale up to
at least to mesoscale (and may be further to planetary scales) and
seemingly all the way down to millimeters. Despite experimental un-
certainties K41 is one of the most stupendous scaling laws of nature.
But of course only in conjunction with intermittency and most likely
fractalilty of atmospheric turbulence. The puzzle to resolve is why
despite the BCC and fractal composition of atmospheric turbulence
the K41 spectrum itself is still there.

m This is exactly the situation in atmospheric turbulence ad-
vanced and analyzed in the works of Lovejoy, Schertzer and co-
workers. From the very early works they advance the point that
atmospheric turbulence is neither 3D nor 2D. The classical school of
geophysics for many years were treating atmosphere as either 3D at
relatively small scales not exceeding in horizontal its vertical height
about Lz ≈ 10 km, or 2D at the scales exceeding this one, Lx,y ≥ Lz.
This implies that at about Lz ≈ 10 km the energy spectrum should
show so-called mesoscale gap, going from K41 appropriate for 3D tur-
bulence to k−3 energy spectrum predicted for 2D turbulence. Also
intuitively it may seem that at very large horizontal scales the atmo-
sphere is totally flat. This is not true at all and the atmosphere re-
tains its three-dimensional nature at any every horizontal scale. Ob-
servations rule out 2D atmospheric turbulence and mesoscale energy
spectrum gap. Instead turbulent structures scale differently under
scaling transformations and for a very ”flat” situation the dimen-
sionality of the active part of turbulence ostensibly becomes more
and more stratified as is described by (5.9).

n As is clear the fractal and multifractal models described so far is
a pure phenomenology that has little contact with the Navier-Stokes
equations. Nevertheless, it is a very important phenomenology that
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sheds much light on the real structure of turbulence and atmospheric
phenomena. Multifractals appear always when the increases of inten-
sity of fluctuations from the mean of a physical field are confined to
sub-domains of progressively lower dimension and at the same time
the increase of the intensity of fluctuations is ruled by a probability
law with algebraic tail. DNS is still not and will not be able to es-
tablish the multifractal structure with certainty for the foreseeable
future. Therefore only the analysis of geophysical data should be
relied upon.

o There were many closure schemes developed in the last 70 years.
The closures in one way or another creep into all contemporary me-
teorological and geophysical models. The reason for this is the same.
There are no other dynamical approaches and descriptions of tur-
bulence. Especially dangerous is the fact that the modeling of high
wavenumber turbulence is usually done by closures or equivalent as-
sumptions. The high wavenumber turbulence is all coherent and such
assumptions are definitely wrong. One should be puzzled however
that in many cases the models work well enough for applications, but
not at all always. It is important to understand when and why they
do or do not.

The Boltzman equations come up in many situations when strong-
ly interacting Hamiltonian dynamical systems are treated in so-called
random phase approximation-RPA. Essentially the RPA assumes that
the relevant fields are incoherent and their phases are quasi-random.
Quasi-random because if they were totally random than there would
be no nonlinear coupling at all and no Boltzman equation. But the
closures are implemented in such a way that all orders of the correla-
tion functions are factorized as powers of the lowest order correlation
function. These approximations became a direction of research as
”weak” plasma turbulence. The spectra in these problems are always
Kolmogorov like power laws (but not necessarily −5/3 power law)
that are the solutions of the Boltzman equation for particular prob-
lems of interacting plasma waves with dispersion (e.g., Zakharov,
Works on General Theory of Waves and Turbulence in Nonlinear
Media, website; Zakharov and Kuznetzov, 1997). The weak turbu-
lence theories for nonlinear waves are somewhat better justified than
K41 theory because the waves have dispersion relation and therefore
some well defined linear approximation that does not exist in fluid
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mechanical turbulence. Nevertheless, I believe that weak turbulence
approximation rarely realizes if at all. The coherence and intrinsic
necessity of organization are likely to be general laws for most if not
all dissipative dynamical systems with many degrees of freedom.

p There is no doubt that there are deep reasons for this. If it was
not like this no engineering treatment of turbulence would have been
possible. Much of the large scale mean properties of turbulent flows
are well modeled using the assumption that the small scale turbulence
is essentially the Kolmogorov like turbulence with no regard of CS or
intermittency. And this fact underlines much of the modeling of at-
mospheric turbulent flows as well. Because of this when one appeals
to obvious observation of CS the usual answer of the proponents of
the models would be that this all may be true about CS but their
origin is in boundary layer effects and has relevance only for details of
turbulent motion near boundaries, while the small scale turbulence
away from the boundaries is properly described by K41 theory. As far
as intermittency of small scale turbulence is concerned the reaction
of many would be that it is the effect of high order velocity correla-
tion functions not affecting mean large scale flow properties. As was
commented before only in geophysical turbulent flows where we can
watch turbulence over many orders of magnitudes and see CS and
their manifestations with naked eye that one starts believing that
K41 theory is acutely insufficient at all scales. But even here some
would argue that this is because of gravitation and stratification of
geophysical flows so that no pure HIT model can be realized. As
far as violent events are concerned they are investigated as separate
phenomena, one by one and often don’t seen as manifestations of
global turbulence. The contrary arguments will continue falling flat
on many ears unless a new theory would be compatible with the mod-
els of turbulence based on pure or somewhat patched up K41 theory
for the small scale turbulence and at the same time account for the
CS and intermittency. In other words a new theory must be comple-
mentary rather than obstructive. From this viewpoint it is possible
to understand the excitement caused by RNG methods among many
researchers some 20 years ago. At the same time among others con-
cerned with fundamental aspects of turbulence the same RNG fever
often caused only irritation and rejection. It is indeed that funda-
mentally RNG did not explain anything on the nature of turbulence
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beyond the many previous closures and perturbation theories. But
RNG allowed to construct models of BL flows in a certain unified and
systematic way and created an appearance of a theory (this practi-
cal approach was first developed and advanced in a series of papers
written by Yakhot and Orszag (1986) and references therein).

q Such convection was discussed in the previous section in a con-
text of the usual perturbation theories. The idea was that mere
convection by large eddies of the small ones should not have direct
dynamical significance and can be removed in all the orders of the
perturbation expansion by the Galilean transformation f → ±k · u,
but applied for random convections of small eddies by the ensemble of
the large ones. This is why it is called ”random Galilean transforma-
tion”. But of course this does not happen for the following reasons. If
this was true then only the interactions between the close in Fourier
space triads of velocity harmonics (7.29), or eddies of comparable
size, would be interacting to each other in a dynamically significant
manner. In this case as was explained above the only solutions that
any perturbation theory can result in would be the K41 spectrum,
but also the analogous K41 scaling relations for the higher order ve-
locity field statistics. in other words the original K41 theory would
be the only possible one, with no intermittency and no CS.

The above line of reasoning had had definite historical merits for
understanding the principles of locality of energy transfer in k-space,
which is likely to be correct in an asymptotic way, but surely cannot
be seen as proof of anything. It just tells one that the perturba-
tion theories per se are not capable to describe the singular fractal
sub-domain such as BCC. Indeed, how is it possible for instance to
pertubatively approach the Beltrami flow from a random flow with no
structure? On the contrary with the assumptions made above while
formulating the model Eqs. (8.30) we are trying to solve a much
lesser in complexity problem. Reiterating we are trying to determine
the fractal dimension of conjectured flow sub-domain dominated by
high wave number harmonics, the ultraviolet asymptotic limit, and
confined in physical space to a fractal sub-domain that creates around
it a quasi-Gaussian flow with K41 spectrum and much less intensive
high wavenumber content. Not to be confused any more with the pos-
sibility of subtracting the highest order nonlinear terms generated by
the perturbation expansion it is reminded that in fact the nonlinear
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coupling in the model Eqs. (8.30) has the vertex ηijs = Pijs(1 + α)
and not Pijs itself. This was disregarded for simplicity because the
scaling result (8.48) would remain the same with substitution of k
by k(1 + α) with α = α(k, f) from (8.32).

r Implicit in the theories of turbulence based on perturbation ex-
pansions that were analyzed in Section 7 was that in order to obtain
the K41 spectrum as a solution it would be necessary to find a suit-
able mechanism for cancellation of all these singular terms in powers
of L2/3. Singular in the sense that the limit L → ∞ is equivalent
to the limit Re → ∞. One of the assumptions was the ”random”
Galilean invariance discussed in the previous footnote. If this really
happened than in the terms of reduction of the nonlinear coupling this
would have meant a stronger reduction with effective coupling con-
stant λ(k)Kraichman ∝ k−1/3, instead of λ(k) ∝ k−1/6, as in (8.60).
This is what in fact the idea of random Galilean transformation as a
tool for the regularization of the perturbation expansions is all about.

s I would like to mention that following Radkevitch, et. al. (2007)
and Radkevitch, et. al. (2008) it is particularly suitable to consider
BCC in terms of (3 + 1) space-time dynamics. The notion of vir-
tual helicity fluctuations can be then interpreted as occupying a cer-
tain space-time domain that is Dst = (3 − µ) + 2/3 + µ/3 = 10/3.
This is equivalent to the total reduction of the nonlinear coupling
by (l/L)−4µ/3 → Re−µ = Re−1/2. Although, it may seem somewhat
superficial to use this terminology outside of quantum physics it may
be useful nevertheless, since the terminology of virtual helicity fluc-
tuations was introduced, to invoke a related ”uncertainty” principle
here. The helicity fluctuations may be spatially filling with their life
time tending to zero in accordance with the value of Dst, or they live
in the volume fraction tending to zero but their life time is finite, or
any intermediate situation in such a way that that the total (3 + 1)
volume has the dimension Dst = 10/3. The mathematical procedure
applied here cannot distinguish between the respective realizations
of turbulence since their contributions are of the same order. How-
ever the energy spectra corresponding to these realizations are not
the K41 anymore. Let us consider briefly how it works. Let us write
the expression for (3 + 1) - space/time dimensionless volume element
corresponding to the above D as follows:
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δV 3+1 = δVB(l)δTB(l)/V (Li)∆t
K41(l) =

= δVB(l)δTB(l)/L3
i < ε >−1/3 l2/3 = (l/Li)

2/3 = Re(l)−1/2, (S.1)

where ∆tK41(l) ≈< ε >−1/3 l2/3 and both intervals are from the
appropriate inertial ranges L >> Li >> l >> lnd , generally different
for different fractal dimensions Dn

F < D. As long as BCC δV 3+1

volume satisfies the relation (S.1) the corresponding contributions in
the functional integral will be the same order of magnitude in the
scaling sense. For instance consider BCC having life time δTB(l) =
∆K41(l). From (S.1) we obtain that the volume fraction:

δVB(l)/V (LI)={(l/LI)2/3/δTB(l)}{∆tK41}=(l/Li)
2/3 =Re(l)−1/2

(S.2)
and the corresponding fractal dimension is now DF

l = 7/3 < DF . But
Dl
F should be also be an adequate solution of the functional integral

representation in the sense that the corresponding perturbation ex-
pansion is (marginally) convergent. In other words the relation (8.58)
must be fulfilled. Substituting the dynamical exponent zl = zK41 =
2/3 we get yl = D + 2/3, and the corresponding energy spectrum
exponent [E(k)] = (D − 1) − yl − zl = −7/3. We notice now that
[E(k)]− [El(k)] = −2/3, and in consequence, in the ultraviolet limit
(l/Li)→ 0, the contribution of El(k−1)/E(k = l−1) ∝ (l/Li)

2/3 → 0.
The same will be true for any other BCC with the life time bigger
than the one determined for the leading BCC with DF = 5/2, this
latter generating the K41 energy spectrum. Thus there is a family of
solutions, in fcat raliztions of turbulence, with increasingly longer life
times BCC corresponding to a multifractal structure of sub-domains
with decreasing Dn

F ≤ DF = 2.5. Although the contribution of these
sub-domains into the energy spectrum is vanishing in the ultravio-
let limit the situation with the higher order turbulent field statistics
can be the opposite, with the dominant contribution coming from
the successively smaller sets and accordingly the higher wavenum-
bers in Fourier space, knd > kn−1

d > kd. There are also solutions with
Dn
F ≥ DF = 2.5 compatible with (8.58) and corresponding BCC life

times smaller than for the leading sub-domain. For such realizations
the energy spectra are on the contrary flatter than the K41 spectrum.
But for these realizations knd < kn−1

d < k′d and they are effectively
eliminated out by the viscous dissipation on time scales tending to
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zero by comparison with the K41 eddy turrnover time. Therefore an
important conclusion follows that the K41 spectrum is singled out in
the sense that although all other two parametric turbulence realiza-
tions corresponding to different values of (y, z) parameters contribute
comparably to the generating functional, nevertheless in conjunction
with the viscous dissipation the most observable spectrum is K41. On
the other hand the BCC set responsible for the K41 spectrum are
not most longlived. The ones who survive longer and most likely to
be observed as stable structures seem to be supported by smaller di-
mensions domains. In particular if we consider what seems to be the
longest life time BCC with z → 0 then the corresponding minimal
Dmin
F → 5/3. It should be noted that the amplitudes of turbulent

fields in the fractal sub-domains can be very high, since their inte-
gral contributions to the functional integral are of the same order as
from the averaged flow in the whole 3D domain despite the vanish-
ingly small volume that they occupy. This and the longevity of these
subdomains can be particularly important in anisotropic and BL tur-
bulence. It appears that the model considered in this paper gives a
glimpse into the multifractal structure of turbulence corresponding
to the dynamical hierarchy of helical fluctuations. This problem is
extremely complicated and out of scope of this paper, except from
the above quantitative observations.

t One can see in Figs. 11 and 12 from Mininni, et. al, (2008b)
that the energy spectrum seems to lie between the trial spectra com-
pensated respectively by the factors with exponents 5/3 and 4/3.
The flatter than −5/3 slope of the part of the energy spectrum is
sometimes referred to as the ”bottleneck” problem that arises due
to ”depletion” of the nonlinear coupling. In fact there is no bottle-
neck problem and no undue depletion of the nonlinear coupling. But
there is a normal and appropriate reduction of the nonlinear coupling
due to the helicity fluctuations and BCC. The energy spectrum as
a result is as it should be in both the inertial range and the buffer
zone. The experimental and numerical data usually quote slightly
lesser values of the skewness anomalous exponent. However the ex-
periment is not reliable and DNS are still dealing with relatively low
values of Re. The numbers are small enough to be compatible given
the lack of accuracy and low Re. Since skewness is anomalously di-
vergent when compared with this means that ν

∫
k4E(k)dk is also
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anomalously divergent. This is not surprising since we established
that E(k) has excess over K41 spectrum in the buffer zone. However
this should be at the same time that ν|intk2E(k)dk =< ε > is Re
independent. The latter expression is a definition that attests to the
fact of energy dissipation and indicates the constancy of energy flux
in the space of scales. Analytically however the two conditions are
difficult to reconcile. It was suggested in Levich (1987) that the way
to do it is to assume small but non-analytical Re dependent correction
to the velocity correlation function (3.14) with their origin in vsing.
This non-analytical addition would be responsible for the excess of
energy in the buffer zone in k-space, but is not noticeable in physical
space because it tends to zero for large Re. But when differentiated
sufficient number of times the small correction becomes large and
dominant, as it happens for skewness in particular. I see no other
way in fact to match K41 spectrum and (9.24) . This cannot be done
in a manner that is totally Re independent. Somewhere between the
two spectra there must be a Re dependent transitional region. In this
sense I suspect that in difference to K41spectrum, even after striping
it from some of the glory typical for K41 theory, the (9.24) spectrum
is not fundamental. The matching that was done here is not exactly
unique since it is global in nature. For instance it can be assumed
that spectrum in the buffer zone is still K41, but the constant in front
of the power law is ∼ Re1/8 and the global contribution of the buffer
zone into the path integral would be the same. As well as the result
for skewness (9.27), etc. I would like to comment that Mininni, et.
al, (2008b) cautiously assert that the boundary between the inertial
range and the region of anomalous energy spectrum growth is Re
independent and hence is likely a property of viscous range. In NT
developed here the boundary is Reynolds dependent since its posi-
tion is given by (9.3). However this dependence is so weak that it will
require verification over a significant range of Reynolds numbers to
disprove. As it is there is no real physical or observed fact that would
establish beyond doubt the total Re independence of the location of
the buffer zone in relation to the inertial range.

u Note that the solution (8.64) does not satisfy the general scaling
rules of the Navier-Stokes equations (7.1). Although, the scaling
rules of the Euler part of the equations are of course met. What
it means is that the solution does not match smoothly the viscous
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dissipation term in the Navier-Stokes equations. This is a hint that
non-analiticity is required, in the limit Re → ∞, for the solution to
match the inertial range with the buffer zone, as was discussed.

v Using the spectrum (9.24) and still assuming the validity of
(6.20) would lead to U+ ∝ (y+)1/16Retau

−1/16, a law that prac-
tically cannot be distinguished, with an appropriate choice of con-
stants, from the logarithmic law in a wide enough range of scales
and Reτ . It is clear that the law can be true only in a very narrow
region of the buffer zone. The nonlinear coupling due to the fluc-
tuating velocity component and that due to the mean velocity field
should be considered together and this will likely affect the structure
of BCC in BL as compared the channel or pipe flow. In viscous
sublayer U+ ∼ y+, so that to match it at y+ ≈ 5. In the buffer zone
U+ should undergo quite an adjustment and in non-universal way of
course. In any case the behavior of U+ in the buffer zone seems as
complicated as of the energy spectrum in the buffer zone in HIT. For
practical purposes the profile in the buffer zone is usually modeled
by trial functions to fit the experiment (e.g., B. Levich, 1962). But
fundamentally the buffer zone remains very poorly understood.

But using the spectrum (9.24) in the buffer zone for trying to de-
duce the velocity profile may be not a good idea after all. The matter
is that if indeed the buffer zone is the internal part of wall BCC the
intensity of fluctuating velocities and their derivatives should consid-
erably increase. Because extending the analogy with HIT these would
correspond to vsing, a singular part of the velocity field and as such
it should contribute comparably with vreg, a regular component, in
the sense of nonlinear coupling in all channel flow domain. In HIT
it was expressed by the scaling relations (8.24) and (8.25). I don’t
know how really to do it in inhomogeneous flow. But as a very rough
estimate it can be assumed that,∫

RE1/2

τ

δ {< ∂y+(u+v+)}2 >′ dy+ ≈
∫
{< ∂y+(u+v+)}2 >′ dy+,

(U.1)
where ∂y+(u+v+) substitutes the nonlinear coupling (8.2). It is sup-
posed to reflect a situation when the time averaged square of non-
linear coupling corresponding to BCC when averaged over the cor-
responding fractal volume ∝ Reτ would contribute equally with the
nonlinear coupling averaged over the whole flow volume proptoReτ , in
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the sense similar to the one defined for HIT in Sections 8,9. However
we automatically assume that the only dynamically significant veloc-
ity field component is the fluctuating one. This may be untrue. For
instance in BL turbulence it would definitely be no true. The chan-
nel and pipe flows are degenerate so the nonlinear coupling involving
the mean flow is zero. But in growing in thickness BL turbulence
this does not happen of course. The nonlinear coupling due to the
fluctuating velocity component and the nonlinear coupling due to the
mean velocity field should be considered together and this will likely
affect the structure of BCC in BL as compared with the channel or
pipe flow.

w The effect of phase decorrelations is equivalent to a forcing term
in the considered together and this will likely affect the structure of
BCC in BL as compared the channel or pipe flow. Navier-Stokes
equations (1.1), F =

∑
Fn{v}δ(t − Tn), where Tn are the time in-

tervals between the phase decorrelations. This can be done regularly
or Tn can be also a shot-nose function. The force is a function of the
flow itself and is workless, F ·v = 0. The forcing does not violate the
incompressibility of course. At times intervals the selected Fourier
coefficients are given a random shift. The velocity vector field in
Fourier space consists of its imaginary and real parts and the angle
between them that is chosen as a phase. It is enough to give random
shifts at time intervals to these phases for the selected harmonics.
For the details we refer to Handler, at. al. (1993) and Murakami, et.
al. (1992).

x The helical composition of turbulent jets was anticipated in
Tsinober and Levich (1983). In the paper of Gavita, et.al,, 2008, the
authors claim that ”contrary to the theories of Moffatt and Levich”
they see intensive helicity in the regions associated with high turbu-
lence activity and not the low one. It should be pointed out that
indeed in several papers on the subject it was loosely formulated by
some that helicity is high where the energy dissipation and likewise
turbulent fields are weak. In reality of course this is a part of con-
fusion with the concept of reduction of the nonlinear coupling due
to the alignment and high helicity. The nonlinear coupling is indeed
reduced in the presence of strong alignment. But this is a relative
reduction that makes the coupling less than it would have been for
the same absolute values of velocity and vorticity but in the absence
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of alignment. But since this process takes place at virtual times at
all scales as is explained in Section 5 and squeezes the active regions
into a fractal asymptotically, the surviving BCC coincide with the
regions of highest turbulent activity. And here the reducing role of
alignment is clearly revealed as it results in the damping of the non-
linear coupling constant. This is what has been usually meant in
most publications, e.g., Levich (1987) and Polifke and Levich (1993).
See also the previous Endnote f for more explicit explanation.

y It is possible to imagine in principle that there are ”silly” non-
equilibrium mechanisms of energy conversion. For instance K41 the-
ory assumes that while loosing its coherence energy injected into flow
does not serve to anything useful, which is to say that no inner orga-
nization is created. The theories of weak turbulence describe similar
processes when nothing interesting is created while energy flows to
small scale motion and dissipated. However as I noted above such
systems are based on approximations that are likely not to be true
in real situations. Even if for some problems it is possible in a lim-
ited sense to assume weak interaction approximation the dynamics
will drive itself the system out of the scope of this assumption and
coherence effects will assert themselves.

Appendix A:

Topological properties of Euler flows.

Moffatt (1985) proved a very powerful theorem that surprisingly
has to some extent remained underutilized by turbulence commu-
nity; although in my view it has definite bearing on the structure of
turbulence and is particularly relevant for BCC in turbulent flows.

By Euler flows one means stationary solutions of the Euler equa-
tions (1.6) that we write now in the vorticity form as follows:

∂tω − curl[v× ω] = 0. (A.1)

The stationary solutions of (A.1) are of the two types. One is:

[vE × ωE ] = ∇α, (A.2)
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where in particular:

α = (P + v2/2) = P ′ (A.3)

Forming a scalar product of (A.2) and v and ω we obtain:

∇α · vE = ∇α · ωE = 0. (A.4)

Meaning that the streamlines and the vorticity lines lie on the surfaces
α = const, excluding the critical surfaces ∇α = 0.

The other type of solutions is:

ωE = ζ(r)vE .

These are actually the Beltrami-Gromeko flows. From continuity
∇ · ωE = ∇ · vE = 0 we obtain:

∇ζ · ωE = ∇ · ζvE = 0 (A.5)

Meaning that the streamlines and the vorticity lines lie on the surfaces
ζ(r) = const, i.e., they belong to the same class of solutions as the
ones in (A.2). There remains a degenerate case of solutions:

ωEE = ζvEE ,

ζ = const. (A.6)

These solutions are singled out because the topology of the stream-
lines and the vorticity lines in this case is different. As was first
explained by Arnold (1974) these are the only Euler flows with the
volume filling ergodic streamlines and vorticity lines. This is why we
chose a subscript EE-Euler ergodic. Since developed turbulence is
almost certainly an ergodic phenomenon it is strongly felt that these
solutions are likely to have direct relation to BCC.

Therefore the argument may be that they have no chance to be
realized in turbulent flows. Note also that the Euler ergodic flows
vEE have counterpart in the Navier-Stokes equations. Indeed, any
flow such that:

vNE = ζωNE = vEEexp(−νζ2t), (A.7)
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is the exact solution of the Navier-Stokes equations having in liter-
ature the name of Trkal solutions. Thus for any ωEE flow with an
arbitrary topology of (v, ω) - lines there exists a corresponding ωNE
with equivalent topology of (v, ω). The use of the ”equivalent” is not
accidental, because the topologies of the two are not identical.

It was shown by Arnold that if vE is analytical then the only sur-
faces on which vE - lines can lie are tori with the vE - lines winding
around them, closed or ergodically. The tori can be linked to each
other in an arbitrary way. As far as the analytical vEE are con-
cerned they can exist only for very particular boundary conditions,
e.g., periodic boundary (Arnold, 1974). Such limitations are the con-
sequences of special properties of the curl−1 operator that allow only
very sparse set of eigen values. In other words the analytical Eu-
ler flows should have very special topology of vEE - lines and hence
are few in the functional space of solutions of Euler equations and
hence cannot be attractors. In this sense they are not interesting for
turbulent flows since such particular restrictions on the streamlines
and vorticity lines topology are totally unfeasible for the arbitrary
complex motion that is associated with turbulence.

Moffatt made a break with these limitations by observing a rather
obvious fact that the solutions of Euler (inviscid) equations allow
an arbitrary number of discontinuous solutions, such as tangential
discontinuities of the velocity field, the seats of vorticity sheets. Such
vorticity sheets are fundamental for fluid mechanics. Their viscous
analogue in the limit Re→∞ is behind much of the aeronautics and
the lift force origin in particular. In other words there is no reason
at all to limit the consideration of Euler flows with analytical fields.
This seemingly simple reassessment of Arnold’s classical results led
Moffatt to most nontrivial and remarkable conclusions.

Here I will give a simplified exposition of these conclusions refer-
ring for details to the seminal paper of Moffatt (1985).

Moffatt Theorem: For an arbitrary smooth differentiable veloc-
ity field v0 of arbitrary topological complexity of streamlines in a
given closed domain D in R3, there exists at least one topologically
accessible Euler flow vE .

Proof : It follows from the analogy between Euler flows vE and
steady state flows in MHD, BM . The full MHD equations for a single
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fluid are as follows:

∂tv− [v× ω] = −∇P ′ + [curlB×B] + ν∆v,

∂tB = curl[v×B] + η∆B, (A.8)

∇ · v = ∇ ·B = 0.

We assume now that η = 0, but at the same time ν 6= 0 and finite.
Hence the appropriate boundary conditions for the system (A.7) can
be chosen:

v|∂D = 0,

B · n|∂D = 0 (A.9)

for all times t ≥ 0. Since the first of the Eqs. (A.8) is purely dis-
sipative we can be sure that as t → ∞, the velocity field relaxes to
v(t→∞)→ 0. Since ν 6= 0 and can be chosen arbitrarily big there is
no danger of developing a singularity anywhere in v(r, t). In a steady
state:

[curlBM ×BM ] = [jM ×BM ] = ∇P ′. (A.10)

We notice that by the following substitution:

jM → ωM ,

BM → vM , (A.11)

P ′ → P ′,

the Eq. (A.10) for BM becomes identical with Eq. (A.2) for vE .
Hence for every solution BM there is an identical solution vE and
the number of vE in the functional space of all Euler equations so-
lutions equals to the number of BM solutions. Note that the one
to one correspondence is between vE - lines and BM - lines rather
than between ω - lines and BM - lines. Apart from the cross helic-
ity invariant defined in Section 2 (footnote 17), both are the exact
invariants for ν = 0, the MHD equations have another invariant for
the conductivity η = 0, the magnetic helicity:

HM =

∫
D

A ·BdV ,

B = curlA. (A.12)
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As is well known the magnetic helicity is a constraint on the relaxation
of magnetic field: ∫

D

B2dV ≥Mmin > 0. (A.13)

Briefly the proof is like this. From the Schwartz inequality we have:∫
D

B2dV

∫
D

A2dV ≥ {
∫
D

(A ·B)dV }2. (A.14)

By variational principle it can be shown that:∫
D

B2dV ≥ q2
0

∫
D

A2dV , (A.15)

where q2
0 is the square of the minimal eigen value for the solution of

the diffusion eigen value problem:

(∆ + q2
0)A(r ∈ D) = 0,

curlA(r /∈ D) = 0, (A.16)

where A is continuous across ∂d and |A(|r| → ∞)| → 0. Comparing
(A.15) and (A.14) we obtain:∫

D

B2dV ≥ q0|HM | = Mmin > 0. (A.17)

Hence: ∫
D

{(B(t→∞)2 + v(t→∞)2}dV →Mmin, (A.18)

monotonically, since v(t → ∞) → 0. Hence, for arbitrary complex
topology of B(t → ∞) = BM , i.e., ∀B(t = 0) : ∃BM , where BM -
lines have equivalent topology that is dynamically accessible. This
is not possible in the class of analytical functions as was explained
above. The conclusion is that the BM generally are not analytical.
For any B(t = 0) there may be generally many corresponding dy-
namically accessible BM , but it is enough to assume that there is at
least one. Since there is an uncountable infinity of B(t = 0) there is
also an uncountable infinity of BM that are dynamically accessible
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and having equivalent topology, in the sense that in difference to the
initially smooth B(t = 0) there should be a subdomain in D where
BM , or its derivatives suffer tangential discontinuities.

Since ∀BM : ∃vE , we conclude that there is an uncountable infi-
nite set of vE in the functional set of all solutions of Euler equations.
In difference to BM that are dynamically accessible from the topolog-
ically equivalent B(t = 0), generally no such dynamical accessibility
exists for vE , i.e., generally limv(t∞) 6= vE . Therefore the only
statement that can be made is that ∀v(t = 0) : ∃vE , with arbitrary
complex topology of v(t = 0) - lines, that is topologically accessi-
ble, in contrast to dynamically accessible. Exactly the same applies
to ergodic flow field realizations. For any v(t = 0) with ergodic
volume filling topology v(t = 0) - lines there is at least one topologi-
cally accessible vEE , which means that there is uncountable infinity
of topologically accessible vEE solutions with equivalent topology of
vEE - lines. This concludes the proof of the Moffatt Theorem.

As a follow up I would like to make a few remarks.

1. First of all it is necessary to look a little deeper at the meaning
of equivalent topology. To this end it we go back to the well known
fundamentals of inviscid fluid mechanics (as was done by Moffatt in
his paper of 1985a). It was briefly mentioned above that a generic
flow in incompressible inviscid fluid can be seen as volume conserv-
ing diffeomorphic mappings of all the fluid elements on themselves
caused by the flow generating pressure gradient. There are an infi-
nite number of such mappings and all of them are usually interpreted
as the elements of an infinite-dimensional group of volume conserving
Diffeomorphisms (Arnold, 1974).

In Lagrangian reference frame (also introduced by Euler) the flow
of inviscid fluid is considered by following the trajectories of all fluid
elements instead of considering the flow in relation to a an observer
in affixed reference frame. It is not practical for specific calculations,
but allows important methodological observations that are difficult to
make from the Euler equations directly. Let us introduce a vector field
x(s, t), characterizing the totality of all fluid elements trajectories
in space/time. The three component parameter s labels the fluid
elements. While s spans all allowed values the trajectories x(s, t) fill
in densely the whole fluid domain. We chose for s the initial positions
of fluid elements, thus the parametric equation: s = x(s, t = 0). The
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trajectories x(s, t) are related to the Euler velocity field v(x, t) as
follows:

∂tx(s, t) = v{x(s, t), t}. (A.19)

To pass over from the Eulerian reference frame to Lagrangian means
the change of coordinated so that the independent variables (x, t) are
substituted by (s, t), and the unknown v(x, t) by v{x(s, t), t}, the two
related by (A.19). The Lagrangian trajectories x(s, t) are determined
for any given initial Lagrangian velocity field vL = ∂tx(s, t)|t=0. It
is clear that the set of coordinates (s, t) is generally non stationary,
curvilinear and non orthogonal. Indeed, consider at t = 0 a plane, say
s1 = const. Then at the next time moment t > 0 this will generally
becomes curved surface composed of the same fluid elements which
changed their relative positions. The change of position is caused by
the pressure gradient, which is the only real force in Lagrangian repre-
sentation and itself in incompressible fluids is a complicated function
of the global velocity distribution velocity, while the nonlinear terms
in the Euler equations went over to the Lagrangian non inertial ref-
erence frame associated forces. While the fluid elements remain at
rest in Lagrangian reference frame, the coordinate system evolves, as
it is effectively frozen into fluid elements. Inevitably therefore the
coordinate system is non stationary, non orthogonal and curvilinear.

As was stated before kinematically a fluid motion in a compact do-
main can be interpreted as diffeomorphic mapping, differentiable and
invertible, by which each fluid element that is located at x(s, t = 0),
for t > 0 is convected to be located somewhere else at x(s, t). Thus
the total flow can be interpreted as a trajectory in infinitely dimen-
sional configuration space. Any deformation of incompressible con-
tinuum corresponding to volume conserving diffeomorphic mapping,
actually a reshuffling of the fluid elements, can be represented in dif-
ferential form as coordinates transformation as follows:

dxi(s, t) = ∂xi(s, t)/∂xj(s, t)dxj(s, t = 0),

Det||∂xi(s, t)/∂xj(s, t)|| = 1. (A.20)

All these transformations together, if they are differentiable and in-
vertible, form an infinite-dimensional group of Diffeomorphisms. But
generally the deformations of continuum although smooth are not
necessarily invertible. They would be of course if the class of flows
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that we consider consists of analytical solutions. But the very exis-
tence and actually inevitability of the flows with tangential discon-
tinuities in the velocity field in the Eulerian frame means that we
must abandon the invertibility assumption. Finite number of defor-
mations cannot form nonanaliticity from an initially smooth velocity
field, which means as explained by Moffatt, that it forms asymptoti-
cally in the limit t→∞.

The total topology of thus evolving fields in the limit of t → ∞
is not strictly the same any more. For instance the magnetic field
limB(t → ∞) = BM remain the same as B(t = 0) - lines. But the
topology of the current jM - lines has changed by comparison with
j(t = 0) - lines, as a result of the current sheets formed in jM . The
same is true respectively for the velocity field and the vorticity field.

2. I would like to make a comment on the issue that I have not
seen discussed in literature, although it may be understood by oth-
ers as obvious. The Euler equations in both representations are of
course the Hamiltonian equations, as was proved rigorously first by
Arnold and since then reiterated in various ways in a number of pub-
lications. Being such they must be time reversible. However, as soon
as we allow for the deformations not to be invertible in the limit
t → ∞, which necessary for the development of inescapable velocity
field nonanaliticity in this limit, the time reversibility is abandoned.
There is a very long debate that does not seem finding mathematical
resolution whether the general solution of the Euler equations is reg-
ular in space/time or forms a singularity in finite time. If the latter
is true then the time reversibility is not an issue. However, less strin-
gent and definitely existing nonanaliticity of Euler flows is sufficient
to break the time reversibility by itself. In real fluids described by
the dissipative Navier-Stokes equations the matter resolves itself of
course. But it seems that the seeds of irreversibility lie already with
the nondifferentiable solutions of the Euler equations.

3. The next comment I would like to make concerns the distinc-
tions between the Euler flows vE and vEE . As was pointed out by
Moffatt the streamlines of vEE are ergodic and volume filling while
the streamlines of vE are not. There is another distinction that may
seem trivial but I have not met it discussed in literature.

It was pointed out above that for each vEE there exists analo-
gous non-stationary solution of the Navier-Stokes equations vNE =
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ζωNE = vEEexp(νζ
2t). Since there is an uncountable multitude of

vEE) flows there must be also an uncountable multitude of vNE flows
as well. Since the Navier-Stokes equations do not allow surfaces of
discontinuities of the velocity field it is clear that the analogy fails
for these surfaces. But in total fluid domain, except the surfaces
that become the seats of intensive viscous dissipation, the statement
remains true. The rest is the problem of stability of vNE .

In this context it is important to distinguish between the stability
of vNE flows and the stability of vEE flows. The latter was considered
by Moffatt (1986) who concluded that vEE flows are absolutely un-
stable in difference with generally stable dynamically accessible BM

solutions. This is easy to understand because the surfaces of tan-
gential discontinuities in the flows of inviscid fluids are subject to
absolute Helmholtz instability. This instability is widely believed to
be the reason for the curdling of vorticity sheets that can only be bal-
anced by the molecular viscosity in real fluids. However, the stability
of non stationary vNE flows is much richer problem and the results
may be non- trivial (Libin, et.al., 1987; Libin, 2008).

In difference to vEE all other Euler flows generally do not have
at all the analogous non stationary solutions of the Navier-Stokes
equations.

4. So what all of the above discussion has to do with turbulence?
It was conjectured by Moffatt that since there is am uncountable
multitude of Euler flows they may serve as attractors in the func-
tional space of all the solutions of the real Navier-Stokes equations.
However, except of ergodicity of vEE as compared with vE it was
not really clear what is so special about Beltrami flows as far as
the reduction on nonlinearity is concerned. This reduction can be
conjectured due to vE flows. Such flows do not require generally
contiguous sub-domains and in this sense the reduction can be local
in space. We know experimentally that turbulence shows contiguous
Beltrami sub-domains that we called BCC. Whether there is also a
local in space attraction to vE flows we don’t know. But even if there
is one I doubt that this can make real dynamical impact. The reason
for this, as we just discussed, is that in the Navier-Stokes equations
we must rather consider the role of non stationary solutions. It is
probably these solutions that we actually see as BCC structures and
not purely inviscid vEE flows. The distinction is subtle but probably
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important on the level of stability problem.

The functional integral representation of Sections 8 and 9 of course
explicitly depends on the space/time realizations of the velocity field.
The BCC fundamentally live in space/time and consist of Trkal flows
rather than pure Beltrami flows. Still I do not suggest changing
the name of BCC to TCC since we are all used to Beltrami flows
terminology.
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