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Abstract

In this contribution some basic problems of practical ap-
plications of quantum mechanics to the functioning of micro-
systems have been discussed. In particular, it has been shown
that starting from fundamental principles one cannot calcu-
late 3D-cinfigurations of atoms in molecules. In order to get
meaningful results in these calculations, the empirical infor-
mation about the configuration of molecule is necessary. The
problem of variables separation in quantum chemistry was dis-
cussed. It has been shown that the separation of electronic and
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nuclear parts in nuclear-electronic problem of quantum chem-
istry can be performed in the adiabatic approximation only.
The Schroedinger equation with the stationary operator H,
common for all isomers of any moelcule, cannot be written as
well.
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1 Introduction

In this contribution, some basic problems of practical applications
of quantum mechanics to the functioning of micro-systems have been
discussed. Apparently the attention, adequate to the importance of
these problems for quantum mechanical analysis of molecular sys-
tems, has not been paid so far.

At the very beginning of the development of quantum mechanics,
soon after the theory of hydrogen atom and H2 molecule were de-
veloped, it has been shown that, in a reasonable approximation, one
can consider molecules as stable sets of electrons and atomic nucleus
in the Coulomb field. It has also been noticed that the huge mass
difference between electron and proton allows separation of motion
of nuclei and electron, using either Born-Oppenheimer or adiabatic
approximation[1]. At present, the opinion that Schroedinger equation
in a general form can solve any problem of structure and properties
of a micro-world dominates and only a finite speed of computers has
been considered as a real obstacle and restriction.

We analyze some fundamental aspects of the formulation of quan-
tum problems in applications to complex systems like chemical com-
pounds and molecular transformations.

2 The role of empirical parameters in the funda-
mental approach

As a rule, the solution of any theoretical problem related to the
structure and properties of microsystems starts with the Schroedinger
equation. In a reasonable approximation, the description of the
molecular object can be restricted with the binary Coulomb inter-
actions of the shell electrons with atom nuclei (Vee, Ven, Vnn). The
corresponding Hamiltonian has the following form:

Hen = Te + Tn + Vee + Ven + Vnn.

Apparently, the only problem remaining is the Schroedinger equation
with this operator. Such solution depends only on the mathematical
methods, the computer speed, etc. This is the mainstream of the
activity in this area.
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As shown below, such point of view is fundamentally incorrect.
Certain considerations in this respect have been expressed already by
the first author [2],[3],[4],[5]. In the present contribution, these con-
siderations will be developed further. It is known, that any molecu-
lar object with given ”gross-formula” (e.g., chemical formula, which
does not take into account the three-dimensional conformation of the
molecules) can exist in a large number of structural isomers. For ex-
ample, the system C6H6 exists not only in the form of benzene, but
as dozens other isomers as well. For the molecular system consisting
of 30 − 40 atomic objects the number of possible stable structures
might be as large as hundreds of thousands. In the Hamiltonian
written above, this fact is not taken into account. So, it is clear that
the differential equation Henψen = Eenψen cannot yield a solution to
the isomerization problem because the existence of multiple isomers
is not well defined in it. Strictly speaking, this is not a well-defined
problem. In order to get solution, which is reasonably close to the
actual structure, Schroedinger approach needs additional restrictions
on the system to be imposed. So far, these restrictions were not de-
rived from the basic quantum mechanical principles. One of the most
natural restrictions is a requirement for the system not deviate from
the given state too far. In practice, the states, which will be deter-
mined from the Schroedinger equation, are taken from experiments
and never, or almost never, are derived from any theory existing to-
day. In quantum chemistry, these empirical supplement to quantum
chemistry is crucially important, because only a very small part of
all possible isomeric structures is present in real molecular systems.

In chemistry, the purely fundamental approach (i.e., the
solution of a problem, which is based on the basic principles
and fundamental equations only) is simply inadequate to
the experiments. This very important aspect of the problem is not
mentioned in the vast majority of publications on quantum mechanics
and quantum chemistry at all.
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3 To the problem of separation of the electronic
and nuclear parts in the nuclear-electronic prob-
lems of quantum chemistry

The natural additional restriction, which permits to determine the
desirable stable structure, is the condition that nuclei motion takes
place in the potential ”well”, which minimum is close to one known
from the experiments but not from theory. For example, for the set
of atoms C6H6 this desired configuration might be a configuration of
benzene. When configuration of the molecule is postulated, one has
two ways to go further:

• One can consider the electronic states in the field created by
the set of nuclei of atoms, which constitute a molecule[6]. This
problem, which below will be called an electronic one, accord-
ing to the standard model, is determined by the fundamental
electromagnetic field, in practice considered as the Coulomb
force. The coordinate system, which is commonly used in this
formalism is the Cartesian one.

• According to the second approach (which will be called a nu-
clear one), the potentials, as well as other fundamental fields,
explicitly are absent at all. Instead, one uses parameters of
different kind, such as elasticity, which are derived from the
Hooke’s law in harmonic approximation, and other
semi-empirical date.

If relative disposition of nuclei is changed, the eigenvalues Eek and
wave functions ψek for the electronic problem will parametrically de-
pend on the coordinates of the nuclei. In this case, the additive
component, i.e., the energy of the Coulomb repulsion of nuclei at
their relative disposition, is added to the eigenvalues of energy levels
of the electronic solution. It is obvious that such a problem might be
mathematically formulated and solved without imposing additional
restrictions. The problem of the nuclei motion, or their stationary
states, can also be formulated and solved independently, if one in-
troduces some potential function dependent on the coordinates of
the nuclei. We do not discuss now the questions how both problems
can be mathematically solved in general case. We only note that, in
principle, such solution is always possible.
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However, if our final goal is comparison with experimental data,
the question what to do with solutions obtained this way remains
unsolved. If from the very beginning one has in view the molecule,
which electrons and nuclei are inseparable, the determination of gen-
eral equation for the common states of both electrons and nuclei must
be made. In this case, independent solution of two problems for the
generalized system is possible only when the operator (Hamiltonian
Hen) leads to the sum of the operators, each of which depends on
its coordinates only. The coordinates are separated in this and only
in this case. Such a procedure for the operator Hen in general case
cannot be accomplished.

If the variables have been separated, the eigenvalues of the general
problem (i.e., the energy levels) can be expressed through the sums of
the energy of each particular problem, whereas eigenfunctions can be
written in the form of products of eigenfunctions, corresponding to
them. In this case, the question arises, whether the same method is
applicable to the general nuclei-electronic problem. The total Hamil-
tonian in this case is of the form:

Hen = Te + Vee + Ven + Vnn + Tn.

If one writes

Hen = Te + Vee + Ven + Vnn −W + Tn + W = He −W + Hn,

where
He = Te + Vee + Ven + Vnn,

Hn = Tn + W

nothing is changed. Here the symbols Te and Tn designate kinetic
operators, Vee and similar symbols are related to other potential
functions of electron-electronic and other interactions, symbol W is
the potential function, chosen during the formulation of the problem
of nuclei motions (Heψn = Eeψn). If the problem of the electronic
states in the filed of immovable nuclei would be solved at different
dispositions of these nuclei in the 3D space, then

He (Q)ψe (Q) = (Te + Vee + Ven (Q) + Vnn (Q))ψe (Q) =
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= Ee (Q) ψe (Q) .

Let us consider only the case of small deviations from the potential
minimum. Now

Ee (Q) = Ee (0) + ∆Ee (Q)

and

ψe (Q) = ψe (0) +
(

∂ψe

∂Q

)

0

Q.

Here the symbol Q designates the coordinates, originated at the min-
imum of the potential function. It corresponds to the disposition of
the atom nuclei of the molecule relative to each other. Let’s con-
sider the action of the operator Hen on the product of the functions
ψe (Q) ψn (Q) assuming that the function ψn (Q) corresponds to the
operator Hn = Tn + W. Let’s also take into consideration that in
the operator Te the differentiation must be performed with respect
to the coordinates of the electron only. Now we have:

Hen [ψe (Q)ψn (Q)] = (He −W + Hn) [ψe (Q) ψn (Q)] =

= [Ee (0) + ∆Ee (Q)] [ψe (Q)ψn (Q)]−

−W [ψe (Q) ψn (Q)] + Hn [ψe (Q) ψn (Q)] =

= [Ee (0) + ∆E (Q) + En] [ψe (Q) ψn (Q)]−W [ψe (Q) ψn (Q)]+

+ψe (Q)Teψn (Q) + 2ψ′
e (Q) ψ′

e (Q) =

= [Ee (0) + ∆E (Q) + En] [ψe (Q)ψn (Q)]−W [ψe (Q) ψn (Q) +

+2ψ′
e (Q) ψ′

e (Q)] .

Here, it has been taken into account that

Tnψe (Q) = Tn

[
ψe (0) +

(
∂ψe

∂Q

)

0

Q

]
= 0,
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because the action of the operator Tn on the function provides dou-
ble differentiation with respect to the coordinates Q relative to the
nuclei arrangement. This expression can be simplified if one takes
into consideration that W = ∆Ee (Q) leads to different W for differ-
ent electronic states and presumes that the ”well” center W coincides
with the point of the energy minimum Ee (0):

Hen [ψe (Q) ψn (Q)] = [Ee (0) + En] [ψe (Q) ψn (Q)]+2ψ′
e (Q)ψ′

e (Q) ,
(1)

where En is the energy in the nuclei motion problem with the Hamil-
tonian Hn = Tn + ∆Ee (Q). One can see that the function
ψe (Q)ψn (Q) satisfies Schroedinger [7] equation with the Hamilto-
nian Hen only up to the term, which contains the first derivatives
of the functionψe (Q) and ψn (Q)with respect to the coordinates Q.
However, this term does not change the average energy value:

H =
∫

ψeψnHenψeψndvedvn = [Ee (0) + En] +

+2
∫ (∫

ψeψ
′
edve

)
ψnψ′

n (Q) dvn = Ee (0) + En. (2)

Here it is taken into account that functions ψe, ψn are real (as usu-
ally takes place in quantum chemistry). One should also note that
the normalization

∫
ψ2

e (Q) dve = 1 is valid for any coordinates Q
corresponding to wavefunctions ψe (Q). Hence, the derivative of this
integral with respect to Q equals to zero

∫
ψe (Q)ψ′

e (Q) dve = 0. (3)

This result leads to an important conclusion. Although the sum
Een = Ee (0) + En and the function ψe (Q) ψn (Q) do not corre-
spond to the Schroedinger equation with the Hamiltonian Hen, in
this particular case the average energy value is considered to be equal
Een = Ee (0) + En. This means that the solutions of the nuclear
problem and the solution of the electronic problem are separated.
All quantum chemical calculations are based on these results. These
considerations also justify the adiabatic approximation in quantum
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chemistry, which is widely used without proper analysis of its validity
in application to each particular problem.

The linear dependence ψe (Q) on Q, presumed in equations (2)
and (3) means that the function ∆E (Q) is a quadratic form, i.e.,
corresponds to the harmonic potential. All these considerations lead
to the conclusion that the solution of the nuclear-electronic problem
in the adiabatic approximation is a model approach, which is rather
close to the solution needed in a number of applications. However,
it works under assumptions, which validity is not self-assumed and
must be thoroughly verified in each particular case. However, such
verification usually is not performed. Moreover, the calculation of
Een and ψen according to the algorithm outlined above, is often used
when the adiabatic separation of problems is incorrect. For example,
adiabatic approximation is commonly used for the analysis of the an-
harmonic oscillations of multi atomic molecules. It is clear that in
this case one gets even less precise expression for H. The verification
whether the adiabatic approach is applicable to anharmonic oscilla-
tions in molecules is necessary prior to application of the adiabatic
formalism to any specific molecular system in which the anharmonic-
ity is substantial.

A priori it is clear that the adiabatic approach in quantum chem-
istry often is not valid at all. The question about validity of the adia-
batic simplification, which allows separation of the nuclear-electronic
problem into two independent problems, must be answered in each
particular case. Nevertheless, the fact that the adiabatic solution is
only an approximate one usually is not mentioned, and the applica-
bility of the adiabatic approach is not verified.

In short, the adiabatic conditions can be formulated as follows:
Assume that

I. The electronic energy of the molecule in the interval ∆Q of the
nuclear coordinates has the minimum Ee (Q0)

and

II. the dependence of the electronic function on nuclei coordinates
is linear

ψe (Q) = ψe (0) +
(

∂ψ

∂Q

)

0

Q.
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III. Under these conditions one can select the potential energy for
the problem of the nuclei motion in the form

W = Ee (Q)− Ee (Q0) =
1
2
k (Q−Q0)

2
.

If conditions I, II and III are fulfilled, the nuclear-electronic problem
can be separated into two problems, namely, the electronic and the
nuclear one. The general solution of the problem in the adiabatic
approximation can be represented as follows:

Een = Ee (Q) + En,

ψen = ψe (r, Q) ψn (Q) . (4)

In all other cases the conditions for adiabatic approximation are not
fulfilled.

4 To the problem of writing the Schroedinger
equation common for all nuclei-electronic con-
figurations of a molecule

The solution of purely electronic problem based on the fundamen-
tal interactions, in principle, is possible at any disposition of nuclei
(under condition that spatial limitations are given a priori and that
their determination is not a part of the problem). However, each
3D-arrangement of nuclei (for example, in the benzene molecule)
corresponds to different Schroedinger equation. Verifying the coor-
dinates of the atoms nuclei in the system (using, for instance, the
splines method) one can compute the electronic configurations and
their properties. However, writing a single Schroedinger equa-
tion common for all configurations of a molecule, with the
stationary operator Hen, which gives to solution the same
and even approximately correct result, is impossible.

The Schroedinger equation for multi-nuclei dynamics problem is
formed for each nuclear-electronic state with ”its own” potential. The
single equation for all isomers and all configurations does not exist.
The attempts
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(A) to solve the problem of the molecular world on the bases of the
equations, which remain the same for all nuclei-electronic states

and

(B) to take into account the fundamental fields and fundamental
equations

only leads to the incorrectness of the formulation of the
nuclei-electronic problem in the sense, which has been described above.
This approach also makes impossible the comparison of the results of
the calculations with experimental data.

As has been demonstrated above, even for different electronic
states of the same molecule one cannot use the general form of the
electronic-nucleus Hamiltonian. If one tries to formulate the problem
in the adiabatic approximation, one has to select in each a differ-
ent potential functions W = ∆E (Q). The situation becomes even
more complicated if one considers the problem like isomer-isomer
transformations. In this case, one must indicate from the very be-
ginning that the motion of nuclei is possible only in areas where the
selected isomer shape (for example, the configuration of benzol) per-
mits. The restricting potential takes the form of the potential well
with two minima. The dependence of the electronic wave function
on the relative nuclei coordinates becomes very complicated. Even if
the problem of the nucleus motion is solved, one cannot consider the
product (ψeψn) to be an eigenfunction of the Schroedinger equations
of the general form. The sum E = Ee + En is not the eigenvalue of
this Schroedinger equations as well. However, one still can construct
an approximate energy matrix using the Ritz method with adiabatic
functions as basis functions. In the case of two isomers problem, it
is reasonable to choose distinct basis functions for each well. Both
theoretically and practically, we come to general conclusion that the
”matrix” formulation of quantum mechanics is more general that the
operator approach.

5 Conclusions

Starting from basic principles, in a number of case one can for-
mulate algorithms, which give a reasonable agreement with the ex-
periment. In particular, semi-fundamental-semi-empirical approach
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works when adiabatic conditions are valid. However, even in this
case one must introduce ”by force” the configurations of molecules,
which cannot be derived form fundamental equations of physics. The
Schroedinger equation with the stationary operator Hen, common
to all configurations of a molecule, cannot be written either. The
question concerning the reason of the theoretical and conceptual gap
between fundamental world structure, which follows form the laws of
modern physics, and non-fundamental world, which is obvious at any
attempt to solve the practical problems of chemistry, is intriguing.
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